本发明属于玻璃制造
技术领域:
,尤其涉及一种超屏蔽隔热型三银可钢化low-e玻璃及制备方法。
背景技术:
:玻璃是一种重要的建材,现代高层建筑大多采用玻璃幕墙,目前人们普遍将单层平板玻璃应用在玻璃幕墙上,其具有良好的透光性,但是隔热效果较差,窗外的红外线容易透过玻璃辐射到室内,造成室内温度高,特别是夏季,室内温度过高容易造成人体不适并且耗费空调的电费,现有技术中通过将内外两片玻璃制成中空玻璃,或在玻璃的空腔面镀上低辐射膜,但其隔热性能以及透光性仍不能满足客户要求。技术实现要素:(一)发明目的为了克服以上不足,本发明的目的在于提供一种超屏蔽隔热型三银可钢化low-e玻璃及制备方法,以解决现有的玻璃隔热效果以及投光性能不理想的技术问题。(二)技术方案为实现上述目的,本申请一方面提供的技术方案如下:一种超屏蔽隔热型三银可钢化low-e玻璃,包括:玻璃基片,玻璃基片上由内到外依次相邻地复合有十四个膜层,其中第一膜层即最内膜层为zro2层,第二膜层为nb2o5层,第三膜层为azo层,第四膜层为ag层,第五膜层为nicr层,第六膜层为azo层,第七膜层为ag层,第八膜层为nicr层,第九膜层为azo层,第十膜层为ag层,第十一膜层为nicr层,第十二膜层为azo层,第十三膜层为si3n4层,第十四膜层zro2层。进一步地,第一膜层即最内膜层zro2层的厚度为35~50nm,第十四膜层zro2层的厚度为30~35nm。进一步地,第二膜层nb2o5层的厚度为15~22nm。进一步地,第三膜层azo层的厚度为9~12nm,第六膜层azo层的厚度为110~113nm,第九膜层azo层的厚度为48~53nm,第十二膜层azo层的厚度为68~72nm。进一步地,第四膜层ag层的厚度为6~8nm。进一步地,第五膜层nicr层的厚度为3~5nm,第八膜层nicr层的厚度为1.5~2.5nm,第十一膜层nicr层的厚度为1.5~2nm。进一步地,第七膜层ag层的厚度为17~18nm。进一步地,第十膜层ag层的厚度为5.5~6.5nm。进一步地,第十三膜层si3n4层的厚度为80~90nm。本申请另一方面提供了一种制备超屏蔽隔热型三银可钢化low-e玻璃的方法,其特征在于,包括如下步骤:步骤一:清洗超屏蔽隔热型三银可钢化low-e玻璃的玻璃基片;步骤二:在玻璃基片完成清洗后,对玻璃基片进行磁控溅射以镀膜,步骤二包括:(1)在玻璃基片上磁控溅射zro2层,采用氧气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,氩气和氧气的比例为1:2.5;(2)磁控溅射nb2o5层,采用氩气作为保护气体,用交流中频电源溅射陶瓷靶;(3)磁控溅射azo层,用中频交流电源溅射陶瓷znazo靶,用氩气作为反应气体并掺入少量o2,氩气和氧气的比例为10:1.4;(4)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;(5)磁控溅射nicr层,用直流电源溅射;(6)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,氩气和氧气的比例为10:1.5;(7)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;(8)磁控溅射nicr层,用直流电源溅射;(9)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,氩气和氧气的比例为10:1.45;(10)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;(11)磁控溅射nicr层,用直流电源溅射;(12)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,氩气和氧气的比例为10:1.45;(13)磁控溅射si3n4层,采用氮气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,氩气和氮气的比例为1:1.2;半导体材料为si和铝,其比为98:2,密度为98%;(14)在玻璃基片上磁控溅射zro2层,采用氧气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,氩气和氧气的比例为1:1.5;步骤三:将玻璃基片取出,得到超屏蔽隔热型三银可钢化low-e玻璃。借由以上的技术方案,本申请的有益效果在于:本申请的超屏蔽隔热型三银可钢化low-e玻璃通过在玻璃基片上从内到外依次复合了zro2层、nb2o5层、azo层、ag层、nicr层、azo层、ag层、nicr层、azo层、ag层、nicr层、azo层、si3n4层以及zro2层,使得本申请的low-e玻璃可大量屏蔽太阳辐射出来的红外线,隔绝了太阳能,避免室内外环境透过玻璃进行的热量交换,起到良好的隔热效果,提高室内的舒适度,当空调进行制冷或制暖时,在室内温度达到了设定温度后,空调能够更长时间的处于待机状态,从而节省耗电量,并且,本申请的low-e玻璃硬度高且抗耐腐蚀性能强,玻璃机械性能更好,low-e玻璃不易被划伤或磨损,进一步地,本申请的low-e玻璃还可增加可见光的透过率,使得室内采光效果更好且可减少可见光的反射率,降低光污染。附图说明图1是本发明的超屏蔽隔热型三银可钢化low-e玻璃的结构示意图。附图标记:1:玻璃基片;21:第一膜层;22:第二膜层;23:第三膜层;24:第四膜层;25:第五膜层;26:第六膜层;27:第七膜层;28:第八膜层;29:第九膜层;210:第十膜层;211:第十一膜层;212:第十二膜层;213:第十三膜层;214:第十四膜层。具体实施方式为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。本发明提供的一种超屏蔽隔热型三银可钢化low-e玻璃,其包括:玻璃基片1,玻璃基片1上由内到外依次相邻地复合有十四个膜层,其中,第一膜层21即最内膜层为zro2层,第二膜层22为nb2o5层,第三膜层23为azo层,第四膜层24为ag层,第五膜层25为nicr层,第六膜层26为azo层,第七膜层27为ag层,第八膜层28为nicr层,第九膜层29为azo层,第十膜层210为ag层,第十一膜211层为nicr层,第十二膜层212为azo层,第十三膜层213为si3n4层,第十四膜层214为zro2层。本申请的超屏蔽隔热型三银可钢化low-e玻璃在玻璃基片1上从内到外依次复合了zro2层、nb2o5层、azo层、ag层、nicr层、azo层、ag层、nicr层、azo层、ag层、nicr层、azo层、si3n4层以及zro2层,使得本申请的low-e玻璃可大量屏蔽太阳辐射出来的红外线,隔绝了太阳能,避免室内外环境透过玻璃进行的热量交换,起到良好的隔热效果,提高室内的舒适度,当空调进行制冷或制暖时,在室内温度达到了设定温度后,空调能够更长时间的处于待机状态,从而节省耗电量,并且,本申请的low-e玻璃硬度高且抗耐腐蚀性能强,使玻璃机械性能更好,low-e玻璃不易被划伤或磨损,进一步地,本申请的low-e玻璃还可增加可见光的透过率,使得室内采光效果更好且可减少可见光的反射率,降低光污染。本申请的low-e玻璃各膜层具体作用以及各膜层的具体厚度设置如下:第一膜层21(zro2层),即二氧化锆层,作为第一介质层和第一保护层,zro2是一种高硬度高致密性的抗氧化性能的材料,可提高膜层的物理性能和抗氧化性能,可增强low-e玻璃的强度,避免玻璃被磨损以及划伤,可防止氧气进入氧化ag层,第一膜层21(zro2层)的厚度设置为35~50nm,优选45nm。第二膜层22(nb2o5层),即五氧化二铌层,第二膜层22(nb2o5层)作为第二介质层和第一阻挡层,nb2o5具有高抗变色能力、高折射率和高稳定性的特点,不仅可以阻挡玻璃基片1表面的na 进入到第一功能层ag层破坏银层,还能降低三银low-e玻璃在不同的角度发生变色的现象,使三银low-e玻璃颜色偏差小,并且第二膜层22(nb2o5层)还可降低可见光反射率,避免可见光大量反射造成光污染,第二膜层22(nb2o5层)的厚度设置为15~22nm,优选18nm。第三膜层23(azo层),即铝掺杂的氧化锌层,作为第三介质层和第二阻挡层,azo是一种热稳定性高的材料并且对红外线的辐射率低,可阻止室外高温通过辐射传递到室内,起到较好的隔热效果,第三膜层23(azo层)还可防止高温对第四膜层24(ag层)的破坏,第三膜层23(azo层)的厚度为9~12nm,优选10nm。第四膜层24(ag层),即金属银层,作为第一功能层,利用银作为镀膜层,可提高膜层的红外反射率,而且金属银对红外线的辐射率低,具有良好的隔热效果,起环保节能的作用,第四膜层24(ag层)的厚度为6~8nm,优选7nm。第五膜层25(nicr层),作为ag层的保护层及平整层,nicr是一种高强度和耐腐蚀的合金材料,具有良好的化学稳定性和热学性能,可保护ag层不被破坏且防止ag层被氧化,可提高三银low-e玻璃的机械强度和耐腐蚀性,第五膜层25(nicr层)的厚度为3~5nm,优选4nm。第六膜层26(azo层),即铝掺杂的氧化锌层,作为第四介质层和第三阻挡层,对红外线的辐射率低,具有良好的隔热效果,第六膜层26(azo层)与第三膜层23(azo层)相辅相成,可从两侧对第四膜层24(ag层)进行隔热保护,避免高温对第四膜层24(ag层)的损害,第六膜层26(azo层)的厚度为110~113nm,优选112nm。第七膜层(ag层),即金属银层,作为第二功能层,利用银作为镀膜层,可提高膜层的红外反射率,金属银的辐射率较低,具有良好的隔热效果,第七膜层27(ag层)与第四膜层24(ag层)相互作用,进一步降低low-e玻璃的辐射率,起环保节能的作用,第七膜层27(ag层)的厚度为17~18nm,优选17.5nm。第八膜层28(nicr层),即镍合金层,作为第四阻挡层,nicr是一种高强度和耐腐蚀的合金材料,具有良好的化学稳定性和热学性能,可保护ag层不被破坏且防止ag层被氧化,可提高三银low-e玻璃的强度和耐腐蚀性,由于nicr的热学性能较好,还可提高三银low-e玻璃的隔热性能,第八膜层28(nicr层)与第五膜层25(nicr层)相互作用,从两个方向对第七膜层27(ag层)进行耐腐蚀保护,第八膜层28(nicr层)的厚度为1.5~2.5nm,优选2nm。第九膜层29(azo层),即铝掺杂的氧化锌层,作为第五介质层和第五阻挡层,对红外线的辐射率低,具有良好的隔热效果,第九膜层29(azo层)与第六膜层26(azo层)相辅相成,从两侧对第七膜层27(ag层)进行隔热保护,第九膜层29(azo层)的厚度为48~53nm。第十膜层210(ag层),即金属银层,利用银作为镀膜层,提高膜层的红外反射率,而且第十膜层210(ag层)与第七膜层27(ag层)以及第四膜层24(ag层)多重作用,大量降低low-e玻璃的辐射率,起环保节能的作用,第十膜层210(ag层)的厚度为5.5~6.5nm,优选5.55nm。第十一膜层211(nicr层),即镍合金层,作为第六阻挡层,nicr是一种高强度和耐腐蚀的合金材料,具有良好的稳定性和热学性能,可提高三银low-e玻璃的强度和耐腐蚀性,nicr热学性能较好,还能提高low-e玻璃的隔热效果,第十一膜层211(nicr层)与第八膜层28(nicr层)相互作用,从两侧对第十膜层210(ag层)进行隔热和耐腐蚀保护,第十一膜层211(nicr层)的厚度为1.5~2nm,优选1.55nm。第十二膜层212(azo层),即铝掺杂的氧化锌层,作为第六介质层和第七阻挡层,对红外线的辐射率低,具有良好的隔热效果,与第九膜层29(azo层)相辅相成,从两侧对第十膜层210(ag层)进行隔热保护,第十二膜层212(azo层)的厚度为68~72nm,优选70nm。第十三膜层213(si3n4层),即氮化硅层,作为第二保护层,si3n4是一种高硬度和具有良好的抗氧化性能的材料,提高膜层的物理性能和抗氧化性能,来增强low-e玻璃的强度,使low-e玻璃不易被磨损、划伤。第十三膜层213(si3n4层)设置在最外层作为保护整个膜层的壁垒,第十三膜层213(si3n4层)的厚度为80~90nm,优选85nm。第十四膜层214(zro2层),即二氧化锆层,作为七介质层,zro2是一种高硬度高致密性的抗氧化性能的材料,可提高膜层的物理性能和抗氧化性能,从而增强三银可钢化low-e玻璃的强度,使得玻璃不易被磨损以及划伤,第十四膜层214(zro2层)与十三膜层213(si3n4层)起到重叠保护的效果,第十四膜层214(zro2层)的厚度为30~35nm,优选32nm。具体的,为测试本申请的超屏蔽隔热型三银可钢化low-e玻璃的屏蔽隔热效果,将本申请的超屏蔽隔热型三银可钢化low-e玻璃放在uv-3600紫外光分光光度计上进行测试并得出如下数据,按照jgj/t151-2008标准计算出来6mm三银可钢化low-e 12a 6mm白玻,其光学和热学性能,如下表所示:性能指标参数可见光透过率tvis60可见光玻璃面反射率rout12太阳能透过率tsol23太阳能反射率rout32传热系数u1.6遮阳系数sc0.35从上述表格可知,本申请的超屏蔽隔热型三银可钢化low-e玻璃可见光透过率tvis为60,可见光玻璃面反射率rout为12,太阳能透过率tsol为23,太阳能反射率rout为32,传热系数u为1.6,遮阳系数sc为0.35,从表中分析可知,可见光可大量的透过low-e玻璃进入到室内,增加室内的采光效果,太阳能大量被阻挡到室外,避免太能能进入到室内造成室内温度上升,相比于现有的玻璃,本申请的超屏蔽隔热型三银可钢化low-e玻璃具有较好的遮光性能和隔热性能。具体的,可见光透过率tvis即可见光透过玻璃的强度,可见光玻璃面反射率rout为可见光被反射到玻璃外的强度,太阳能透过率tsol是太阳能透过玻璃的强度,太阳能反射率rout是太阳能被反射到玻璃外的强度,传热系数u代表玻璃的传热强度,遮阳系数sc为透过玻璃的太阳辐射的热量与太阳辐射到玻璃上的热量之比,表征玻璃在无其他遮阳措施情况下对太阳辐射透射得热的减弱程度。本申请另一方面提供的技术方案如下:一种制备超屏蔽隔热型三银可钢化low-e玻璃的方法,包括如下步骤:步骤一:清洗超屏蔽隔热型三银可钢化low-e玻璃的玻璃基片1;步骤二:在玻璃基片1完成清洗后,对玻璃基片1进行磁控溅射以镀膜,步骤二包括:(1)在玻璃基片1上磁控溅射zro2层,采用氧气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,氩气和氧气的比例为1:2.5;(2)磁控溅射nb2o5层,采用氩气作为保护气体,用交流中频电源溅射陶瓷靶;(3)磁控溅射azo层,用中频交流电源溅射陶瓷znazo靶,用氩气作为反应气体并掺入少量o2,氩气和氧气的比例为10:1.4;(4)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;(5)磁控溅射nicr层,用直流电源溅射;(6)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,氩气和氧气的比例为10:1.7;(7)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;(8)磁控溅射nicr层,用直流电源溅射;(9)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,氩气和氧气的比例为10:1.5;(10)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;(11)磁控溅射nicr层,用直流电源溅射;(12)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,氩气和氧气的比例为10:1.6;(13)磁控溅射si3n4层,采用氮气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,氩气和氮气的比例为1:1.2;半导体材料为si和铝,其比为98:2,密度为98%;(14)在玻璃基片1上磁控溅射zro2层,采用氧气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,氩气和氧气的比例为1:1.5;步骤三:将玻璃基片1取出,得到超屏蔽隔热型三银可钢化low-e玻璃。应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。当前第1页1 2 3 
技术特征:1.一种超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,包括:玻璃基片,所述玻璃基片上由内到外依次相邻地复合有十四个膜层,其中第一膜层即最内膜层为zro2层,第二膜层为nb2o5层,第三膜层为azo层,第四膜层为ag层,第五膜层为nicr层,第六膜层为azo层,第七膜层为ag层,第八膜层为nicr层,第九膜层为azo层,第十膜层为ag层,第十一膜层为nicr层,第十二膜层为azo层,第十三膜层为si3n4层,第十四膜层zro2层。
2.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,所述第一膜层即最内膜层zro2层的厚度为35~50nm,所述第十四膜层zro2层的厚度为30~35nm。
3.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,所述第二膜层nb2o5层的厚度为15~22nm。
4.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,所述第三膜层azo层的厚度为9~12nm,所述第六膜层azo层的厚度为110~113nm,所述第九膜层azo层的厚度为48~53nm,所述第十二膜层azo层的厚度为68~72nm。
5.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,所述第四膜层ag层的厚度为6~8nm。
6.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,所述第五膜层nicr层的厚度为3~5nm,所述第八膜层nicr层的厚度为1.5~2.5nm,所述第十一膜层nicr层的厚度为1.5~2nm。
7.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,所述第七膜层ag层的厚度为17~18nm。
8.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,所述第十膜层ag层的厚度为5.5~6.5nm。
9.根据权利要求1所述的超屏蔽隔热型三银可钢化low-e玻璃,其特征在于,所述第十三膜层si3n4层的厚度为80~90nm。
10.一种制备上述权利要求1-9任意一项所述的超屏蔽隔热型三银可钢化low-e玻璃的方法,其特征在于,包括如下步骤:
步骤一:清洗超屏蔽隔热型三银可钢化low-e玻璃的玻璃基片;
步骤二:在所述玻璃基片完成清洗后,对所述玻璃基片进行磁控溅射以镀膜,所述步骤二包括:
(1)在所述玻璃基片上磁控溅射zro2层,采用氧气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,所述氩气和所述氧气的比例为1:2.5;
(2)磁控溅射nb2o5层,采用氩气作为保护气体,用交流中频电源溅射陶瓷靶;
(3)磁控溅射azo层,用中频交流电源溅射陶瓷znazo靶,用氩气作为反应气体并掺入少量o2,所述氩气和所述氧气的比例为10:1.4;
(4)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;
(5)磁控溅射nicr层,用直流电源溅射;
(6)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,所述氩气和所述氧气的比例为10:1.5;
(7)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;
(8)磁控溅射nicr层,用直流电源溅射;
(9)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,所述氩气和所述氧气的比例为10:1.45;
(10)磁控溅射ag层,采用氧气作为反应气体,氩气作为保护气体,直流电源溅射银靶;
(11)磁控溅射nicr层,用直流电源溅射;
(12)磁控溅射azo层,用交流中频电源溅射陶瓷znazo靶,用氩气作为溅射气体并掺入少量o2,所述氩气和所述氧气的比例为10:1.45;
(13)磁控溅射si3n4层,采用氮气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,氩气和氮气的比例为1:1.2;半导体材料为si和铝,其比为98:2,密度为98%;
(14)在所述玻璃基片上磁控溅射zro2层,采用氧气作为反应气体,氩气作为保护气体,用交流中频电源溅射半导体材料,所述氩气和所述氧气的比例为1:1.5;
步骤三:将所述玻璃基片取出,得到所述超屏蔽隔热型三银可钢化low-e玻璃。
技术总结本申请公开了一种超屏蔽隔热型三银可钢化Low‑E玻璃及制备方法,超屏蔽隔热型三银可钢化Low‑E玻璃包括:玻璃基片,玻璃基片上由内到外依次相邻地复合有十四个膜层,其中,第一膜层即最内膜层为ZrO2层,第二膜层为Nb2O5层,第三膜层为AZO层,第四膜层为Ag层,第五膜层为NiCr层,第六膜层为AZO层,第七膜层为Ag层,第八膜层为NiCr层,第九膜层为AZO层,第十膜层为Ag层,第十一膜层为NiCr层,第十二膜层为AZO层,第十三膜层为Si3N4层,第十四膜层ZrO2层。本申请通过在玻璃基片上从内到外依次复合了ZrO2层、Nb2O5层、AZO层、Ag层、NiCr层、AZO层、Ag层、NiCr层、AZO层、Ag层、NiCr层、AZO层、Si3N4层以及ZrO2层,提高了Low‑E玻璃的隔热效果、机械强度、抗腐蚀性能,采光效果。
技术研发人员:史胜全;王印;冉东;李可润;邝良琼;苗晓荣;马满江
受保护的技术使用者:中山市格兰特实业有限公司
技术研发日:2020.03.23
技术公布日:2020.06.09