基于集成深度置信网络的变压器故障诊断方法及系统与流程

专利2022-06-29  123


本发明属于电子电路工程及计算机视觉领域,更具体地,涉及一种基于集成深度置信网络的变压器故障诊断方法及系统。
背景技术
:在变电站中,变压器是最主要的电力设备之一,其运行状况直接关系到发电、供电系统的安全性和可靠性。而变压器在长期的运行中,不可避免地会出现各类故障,因此对于变压器故障进行诊断,是十分必要的。目前针对变压器进行故障诊断,首先测量变压器的振动信号,然后利用计算机算法对提取的振动信号进行处理,最终利用故障识别方法对发生的故障进行区分。目前有通过深度置信网络,开展变压器的故障诊断方法。然而,在该方法中,单一的深度置信网络无法保证可以训练出对所有类型变压器均可有效进行故障诊断的故障诊断模型,只能得到针对某种类型变压器有偏好的故障诊断模型。技术实现要素:针对现有技术的以上缺陷或改进需求,本发明提出了一种基于集成深度置信网络的变压器故障诊断方法及系统,由此解决单个深度置信网络不能有效诊断各种类型变压器故障的技术问题。为实现上述目的,按照本发明的一个方面,提供了一种基于集成深度置信网络的变压器故障诊断方法,包括:获取各类型变压器在不同故障类型下的若干组振动信号,提取各所述振动信号的特征,由提取后的各组振动信号对应的特征构成训练数据;由所述训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率;保留满足要求的故障诊断正确率对应的目标深度置信网络,由各所述目标深度置信网络组建集成深度置信网络,以通过所述集成深度置信网络对变压器进行故障诊断。优选地,所述提取各所述振动信号的特征,包括:分别对各所述振动信号进行傅里叶变换得到各所述振动信号的傅里叶系数,分别将各所述振动信号的傅里叶系数归一化后作为各所述振动信号的特征。优选地,各所述深度置信网络由多个受限玻尔兹曼机逐个堆叠而成,每个所述受限玻尔兹曼机均由1个可见层和1个隐含层构成,每个所述可见层由多个可见层单元构成,每个所述隐含层由多个隐含层单元构成,其中,可见层为受限玻尔兹曼机的输入层,隐含层为受限玻尔兹曼机的输出层,每个受限玻尔兹曼机的输出层作为下一个受限玻尔兹曼机的输入层。优选地,由所述训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率,包括:对于任一深度置信网络,由所述深度置信网络对所述训练数据进行特征提取,将提取后的数据作为所述训练数据的特征数据;利用所述深度置信网络自带的分类器,基于所述训练数据的特征数据得到所述深度置信网络的故障诊断正确率。优选地,由所述深度置信网络对所述训练数据进行特征提取,将提取后的数据作为所述训练数据的特征数据,包括:由所述训练数据无监督地训练所述深度置信网络的结构及其参数;利用所述深度置信网络自带的分类器及所述训练数据的标签信息,有监督地训练所述深度置信网络的结构及其参数,其中,所述标签信息用来表示所述训练数据中的各组数据对应的故障类型;利用所述深度置信网络中堆叠的多个受限玻尔兹曼机对所述训练数据进行逐层特征提取,将最后一个受限玻尔兹曼机中提取的特征作为所述训练数据的特征数据。优选地,利用所述深度置信网络自带的分类器,基于所述训练数据的特征数据得到所述深度置信网络的故障诊断正确率,包括:由得到第k个深度置信网络对应的故障诊断正确率diagnosisaccuracyk,其中,k=1…n,n为深度置信网络的数量,nvalidatingdata为所述训练数据的特征数据数量,nkcorrect为第k个深度置信网络自带分类器正确识别的特征数据数量。优选地,所述保留满足要求的故障诊断正确率对应的目标深度置信网络,由各所述目标深度置信网络组建集成深度置信网络,包括:获取n个所述故障诊断正确率的平均正确率meandiagnosisaccuracy;将所述故障诊断正确率低于所述平均正确率meandiagnosisaccuracy所对应的深度置信网络淘汰,得到剩下的目标深度置信网络;由extraaccuracyt=diagnosisaccuracyt-meandiagnosisaccuracy获取第t个所述目标深度置信网络的额外正确率extraaccuracyt,其中,t=1…t,t为所述目标深度置信网络的数量,diagnosisaccuracyt为第t个所述目标深度置信网络的故障诊断正确率;由为第t个所述目标深度置信网络分配权重值weightt;将各所述目标深度置信网络连同各自对应的权重值,形成集成深度置信网络。优选地,所述通过所述集成深度置信网络对变压器进行故障诊断,包括:获取待诊断变压器的振动信号,提取所述待诊断变压器的振动信号的特征xr,由确定所述待诊断变压器为故障u的得分scoreru,其中,u=1…u,u是故障类型的总数,judgetu是xr被第t个所述目标深度置信网络识别为故障u的结果;将得分最高时对应的故障类型作为所述待诊断变压器的故障类型。按照本发明的另一方面,提供了一种基于集成深度置信网络的变压器故障诊断系统,包括:训练数据构建模块,用于获取各类型变压器在不同故障类型下的若干组振动信号,提取各所述振动信号的特征,由提取后的特征构成训练数据;训练模块,用于由所述训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率;诊断模块,用于保留满足要求的故障诊断正确率对应的目标深度置信网络,由各所述目标深度置信网络组建集成深度置信网络,以通过所述集成深度置信网络对变压器进行故障诊断。按照本发明的另一方面,提供了一种计算机可读存储介质,其上存储有程序指令,所述程序指令被处理器执行时实现如上述任一所述的基于集成深度置信网络的变压器故障诊断方法。总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:本发明提出的集成多个深度置信网络用于故障诊断的方法,优于单个深度置信网络用于故障诊断的方法,通过集成学习策略,将多个不同学习率的深度置信网络进行组合,采用淘汰机制和重分配系数机制,优于其他集成学习方法的淘汰机制和权值重分配机制,可以解决单个深度置信网络不能有效诊断各种类型变压器故障的问题,有效地提高各类型变压器故障诊断的诊断正确率。附图说明图1是本发明实施例提供的一种变压器故障诊断方法的流程示意图;图2是本发明实施例提供的一种集成深度置信网络的生成过程流程示意图;图3是本发明实施例提供的一种变压器故障诊断系统的结构示意图。具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。在本发明实例中,“第一”、“第二”、“第三”等是用于区别不同的对象,而不必用于描述特定的顺序或先后次序。本发明提供一种变压器故障诊断方法,首先对测量的变压器振动信号应用傅里叶变换进行初步处理,然后通过集成学习策略,将多个不同学习率的深度置信网络进行组合,采用淘汰机制和重分配系数机制,进行故障诊断,可得到更高的故障诊断正确率。如图1所示是本发明实施例提供的一种变压器故障诊断方法的流程示意图,包括以下步骤:s1:获取各类型变压器在不同故障类型下的若干组振动信号,提取各振动信号的特征,由提取后的特征构成训练数据;其中,可以通过振动传感器获取变压器的振动信号。s2:由训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率;s3:保留满足要求的故障诊断正确率对应的目标深度置信网络,由各目标深度置信网络组建集成深度置信网络,以通过集成深度置信网络对变压器进行故障诊断。在本发明实施例中,可以通过以下方式提取各振动信号的特征:应用傅里叶变换得到振动信号的傅里叶系数,随后将振动信号的傅里叶系数归一化作为振动信号的特征,其中,傅里叶系数可以通过以下公式(1)获取:其中,at和bt为振动信号f(x)的傅里叶系数,t为傅里叶系数的编号,l为振动信号f(x)的半周期。在本发明实施例中,步骤s3中的集成深度置信网络,为多个不同学习率的深度置信网络,通过预设集成学习策略生成集成深度置信网络,用于故障诊断。在本发明实施例中,单个的深度置信网络是由多个受限玻尔兹曼机逐个堆叠而形成,每个受限玻尔兹曼机均由1个可见层v和1个隐含层h构成,每个可见层v由多个可见层单元构成,每个隐含层h由多个隐含层单元构成,可见层v为每个受限玻尔兹曼机的输入层,隐含层h为每个受限玻尔兹曼机的输出层,每个受限玻尔兹曼机的输出层作为下一个受限玻尔兹曼机的输入层,即上一个受限玻尔兹曼机的隐含层为下一个受限玻尔兹曼机的可见层。其中,受限玻尔兹曼机的学习率对受限玻尔兹曼机的参数有下述影响:其中,δwji表示连接第i个可见层单元vi和第j个隐含层单元hj的权重矩阵的更新量,δbi表示第i个可见层单元vi偏置的更新量,δaj表示第j个隐含层单元hj偏置的更新量,i∈[1,m],m为可见层单元的数量,j∈[1,n],n为隐含层单元的数量,μ为受限玻尔兹曼机的学习率,<vihj>0表示vihj的实际值,vihj是vi和hj的关联程度,<vihj>1表示vihj重构值的概率分布的期望,<hj>0表示隐含层单元hj的实际值,<hj>1表示隐含层单元hj重构值的概率分布的期望,<vi>0表示可见层单元vi实际值,<vi>1表示可见层单元vi重构值的概率分布的期望。其中,深度置信网络的特征提取分为三个步骤:深度置信网络预训练、基于分类器的网络全局微调和特征提取的实现,其中,深度置信网络预训练是应用输入数据,即步骤s1中经傅里叶变换处理后得到的振动信号的特征,无监督训练深度置信网络模型结构及其参数;基于分类器的网络全局微调是在预训练后,应用深度置信网络自带的分类器和输入数据的标签信息,有监督训练深度置信网络模型结构及其参数,其中,标签信息用来表示数据对应的故障类型;特征提取的实现是在基于分类器的网络全局微调结束后,使用深度置信网络中堆叠的多个受限玻尔兹曼机对输入的数据进行逐层特征提取,而最后一个受限玻尔兹曼机中提取的特征即为深度置信网络提取的特征。在本发明实施例中,不同学习率的深度置信网络的数量及各深度置信网络的学习率可以根据实际需要确定,在本发明实施例中,作为示例性说明,可以将学习率分别设置为0.001、0.002、0.005、0.01、0.02、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5,共15个学习率。在本发明实施例中,预设集成学习策略的核心是淘汰机制和权值重分配机制,如图2所示,集成深度置信网络可以通过以下方式实现:步骤1:应用输入数据测试n个不同学习率的深度置信网络,深度置信网络基于提取的特征,应用自带的分类器,按照下述公式(3),可得到各深度置信网络对应的故障诊断正确率;其中,k=1…n为各个深度置信网络对应的编号,n为深度置信网络的数量,nvalidatingdata为由深度置信网络提取的特征数据的数量,nkcorrect为深度置信网络自带分类器正确识别的特征数据数量,diagnosisaccuracyk为第k个深度置信网络对应的故障诊断正确率;步骤2:计算n个故障诊断正确率的平均正确率meandiagnosisaccuracy;步骤3:淘汰机制,即将故障诊断正确率低于平均正确率meandiagnosisaccuracy所对应的深度置信网络在本次集成中淘汰;步骤4:获取各剩下的目标深度置信网络的额外正确率:extraaccuracyt=diagnosisaccuracyt-meandiagnosisaccuracy(4)其中,t=1…t,t为剩下的目标深度置信网络的数量,t为剩下的目标深度置信网络的编号,extraaccuracyt为第t个剩下的目标深度置信网络的额外正确率;步骤5:权重值分配机制,即依据额外正确率为剩下的目标深度置信网络分配权重值:其中,weightt为第t个剩下的目标深度置信网络的权重值;步骤6:将剩下的各目标深度置信网络连同各自对应的权重值,形成集成深度置信网络。在本发明实施例中,在步骤s3中,采用集成深度置信网络进行故障诊断的方法为:假定xr是新输入的待诊断变压器的振动信号,那么xr被判定为故障u的得分scoreru为:其中,u=1…u,u是故障的总数;judgetu是xr被第t个深度置信网络识别为故障u的结果,依据下式(7)给分:那么新的输入数据xr故障类别最终会被判定为故障v,需要满足故障v的得分在所有故障得分中最大,即:scorerv=argmax{scoreru}(8)其中,v∈[1,u]。在本发明实施例中,深度置信网络自带分类器为softmax分类器。如图3所示是本发明实施例提供的一种变压器故障诊断系统的结构示意图,包括:训练数据构建模块201,用于获取各类型变压器在不同故障类型下的若干组振动信号,提取各振动信号的特征,由提取后的特征构成训练数据;训练模块202,用于由训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率;诊断模块203,用于保留满足要求的故障诊断正确率对应的目标深度置信网络,由各目标深度置信网络组建集成深度置信网络,以通过集成深度置信网络对变压器进行故障诊断。其中,各模块的具体实施方式可以参考上述方法实施例的描述,本发明实施例将不再复述。本发明实施例还提供了一种计算机可读存储介质,其上存储有程序指令,该程序指令被处理器执行时实现如上述任一的基于集成深度置信网络的变压器故障诊断方法。以下以一个变压器的故障诊断对本发明的基于集成深度置信网络的变压器故障诊断方法进行说明。利用一个10kv三相变压器对提出的故障诊断方法进行实验验证。测量的10kv变压器振动信号数据为加速度信号数据,即频率为100hz的正弦波,半周期为0.005s,幅值为2.7m/s2,应用傅里叶变换计算变压器振动信号的前128个傅里叶系数。设定本次变压器的故障类型如表1所示,包括了无故障、绕组形变故障、绕组套叠故障、绕组松动故障、铁芯形变故障、绕组形变及铁芯形变双故障、绕组套叠及铁芯形变双故障、绕组松动及铁芯形变双故障、绕组形变和绕组套叠及铁芯形变三故障,一共九种。对于每种故障类型,采集240个数据,每个故障的150个数据集合在一起作为训练数据,用于训练集成深度置信网络,每个故障的剩余90个集合在一起作为测试数据,用于测试训练好的集成深度置信网络性能。表1变压器故障类型编号故障类型f0无故障f1绕组形变故障f2绕组套叠故障f3绕组松动故障f4铁芯形变故障f5绕组形变及铁芯形变双故障f6绕组套叠及铁芯形变双故障f7绕组松动及铁芯形变双故障f8绕组形变、绕组套叠及铁芯形变三故障深度置信网络采用三个受限玻尔兹曼机结构,第一个受限玻尔兹曼机由可见层和第一个隐含层构成,第二个受限玻尔兹曼机由第一个隐含层和第二个隐含层构成,第三个受限玻尔兹曼机由第二个隐含层和第三个隐含层构成,第一个、第二个和第三个隐含层的单元数分别为64,32和16。设定15个深度置信网络,学习率分别设置为0.001、0.002、0.005、0.01、0.02、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5,如下所示:深度置信网络1:学习率为0.001;深度置信网络2:学习率为0.002;深度置信网络3:学习率为0.005;深度置信网络4:学习率为0.01;深度置信网络5:学习率为0.02;深度置信网络6:学习率为0.05;深度置信网络7:学习率为0.1;深度置信网络8:学习率为0.15;深度置信网络9:学习率为0.2;深度置信网络10:学习率为0.25;深度置信网络11:学习率为0.3;深度置信网络12:学习率为0.35;深度置信网络13:学习率为0.4;深度置信网络14:学习率为0.45;深度置信网络15:学习率为0.5;以此15个深度置信网络,对训练数据进行训练,结果如表二所示。表2集成深度置信网络的集成学习模型建立过程以此建立的集成深度置信网络,对变压器故障数据,开展故障诊断,共计720个测试数据,错误识别了7个,正确率为99.03%,优于表2中学习率分别设置为0.001、0.002、0.005、0.01、0.02、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5的任何一个深度置信网络。需要指出,根据实施的需要,可将本申请中描述的各个步骤/部件拆分为更多步骤/部件,也可将两个或多个步骤/部件或者步骤/部件的部分操作组合成新的步骤/部件,以实现本发明的目的。上述根据本发明的方法可在硬件、固件中实现,或者被实现为可存储在记录介质(诸如cdrom、ram、软盘、硬盘或磁光盘)中的软件或计算机代码,或者被实现通过网络下载的原始存储在远程记录介质或非暂时机器可读介质中并将被存储在本地记录介质中的计算机代码,从而在此描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件(诸如asic或fpga)的记录介质上的这样的软件处理。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件(例如,ram、rom、闪存等),当所述软件或计算机代码被计算机、处理器或硬件访问且执行时,实现在此描述的处理方法。此外,当通用计算机访问用于实现在此示出的处理的代码时,代码的执行将通用计算机转换为用于执行在此示出的处理的专用计算机。本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。当前第1页1 2 3 
技术特征:

1.一种基于集成深度置信网络的变压器故障诊断方法,其特征在于,包括:

获取各类型变压器在不同故障类型下的若干组振动信号,提取各所述振动信号的特征,由提取后的各组振动信号对应的特征构成训练数据;

由所述训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率;

保留满足要求的故障诊断正确率对应的目标深度置信网络,由各所述目标深度置信网络组建集成深度置信网络,以通过所述集成深度置信网络对变压器进行故障诊断。

2.根据权利要求1所述的方法,其特征在于,所述提取各所述振动信号的特征,包括:

分别对各所述振动信号进行傅里叶变换得到各所述振动信号的傅里叶系数,分别将各所述振动信号的傅里叶系数归一化后作为各所述振动信号的特征。

3.根据权利要求1或2所述的方法,其特征在于,各所述深度置信网络由多个受限玻尔兹曼机逐个堆叠而成,每个所述受限玻尔兹曼机均由1个可见层和1个隐含层构成,每个所述可见层由多个可见层单元构成,每个所述隐含层由多个隐含层单元构成,其中,可见层为受限玻尔兹曼机的输入层,隐含层为受限玻尔兹曼机的输出层,每个受限玻尔兹曼机的输出层作为下一个受限玻尔兹曼机的输入层。

4.根据权利要求3所述的方法,其特征在于,由所述训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率,包括:

对于任一深度置信网络,由所述深度置信网络对所述训练数据进行特征提取,将提取后的数据作为所述训练数据的特征数据;

利用所述深度置信网络自带的分类器,基于所述训练数据的特征数据得到所述深度置信网络的故障诊断正确率。

5.根据权利要求4所述的方法,其特征在于,由所述深度置信网络对所述训练数据进行特征提取,将提取后的数据作为所述训练数据的特征数据,包括:

由所述训练数据无监督地训练所述深度置信网络的结构及其参数;

利用所述深度置信网络自带的分类器及所述训练数据的标签信息,有监督地训练所述深度置信网络的结构及其参数,其中,所述标签信息用来表示所述训练数据中的各组数据对应的故障类型;

利用所述深度置信网络中堆叠的多个受限玻尔兹曼机对所述训练数据进行逐层特征提取,将最后一个受限玻尔兹曼机中提取的特征作为所述训练数据的特征数据。

6.根据权利要求5所述的方法,其特征在于,利用所述深度置信网络自带的分类器,基于所述训练数据的特征数据得到所述深度置信网络的故障诊断正确率,包括:

得到第k个深度置信网络对应的故障诊断正确率diagnosisaccuracyk,其中,k=1…n,n为深度置信网络的数量,nvalidatingdata为所述训练数据的特征数据数量,nkcorrect为第k个深度置信网络自带分类器正确识别的特征数据数量。

7.根据权利要求6所述的方法,其特征在于,所述保留满足要求的故障诊断正确率对应的目标深度置信网络,由各所述目标深度置信网络组建集成深度置信网络,包括:

获取n个所述故障诊断正确率的平均正确率meandiagnosisaccuracy;

将所述故障诊断正确率低于所述平均正确率meandiagnosisaccuracy所对应的深度置信网络淘汰,得到剩下的目标深度置信网络;

由extraaccuracyt=diagnosisaccuracyt-meandiagnosisaccuracy获取第t个所述目标深度置信网络的额外正确率extraaccuracyt,其中,t=1…t,t为所述目标深度置信网络的数量,diagnosisaccuracyt为第t个所述目标深度置信网络的故障诊断正确率;

为第t个所述目标深度置信网络分配权重值weightt;

将各所述目标深度置信网络连同各自对应的权重值,形成集成深度置信网络。

8.根据权利要求7所述的方法,其特征在于,所述通过所述集成深度置信网络对变压器进行故障诊断,包括:

获取待诊断变压器的振动信号,提取所述待诊断变压器的振动信号的特征xr,由确定所述待诊断变压器为故障u的得分scoreru,其中,u=1…u,u是故障类型的总数,judgetu是xr被第t个所述目标深度置信网络识别为故障u的结果;

将得分最高时对应的故障类型作为所述待诊断变压器的故障类型。

9.一种基于集成深度置信网络的变压器故障诊断系统,其特征在于,包括:

训练数据构建模块,用于获取各类型变压器在不同故障类型下的若干组振动信号,提取各所述振动信号的特征,由提取后的特征构成训练数据;

训练模块,用于由所述训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率;

诊断模块,用于保留满足要求的故障诊断正确率对应的目标深度置信网络,由各所述目标深度置信网络组建集成深度置信网络,以通过所述集成深度置信网络对变压器进行故障诊断。

10.一种计算机可读存储介质,其上存储有程序指令,其特征在于,所述程序指令被处理器执行时实现如权利要求1至8任一所述的基于集成深度置信网络的变压器故障诊断方法。

技术总结
本发明公开了一种基于集成深度置信网络的变压器故障诊断方法及系统,属于电子电路工程及计算机视觉领域,其中,方法的实现包括:获取各类型变压器在不同故障类型下的若干组振动信号,提取各振动信号的特征,由提取后的特征构成训练数据;由训练数据分别对若干个学习率不同的深度置信网络进行训练,得到各深度置信网络的故障诊断正确率;保留满足要求的故障诊断正确率对应的目标深度置信网络,由各目标深度置信网络组建集成深度置信网络,以通过集成深度置信网络对变压器进行故障诊断。本发明可克服单个深度置信网络用于变压器故障诊断是的不完善问题,可有效地提高故障诊断诊断正确率。

技术研发人员:何怡刚;张朝龙;时国龙;张慧;何鎏璐;杜博伦
受保护的技术使用者:武汉大学
技术研发日:2020.01.20
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-17871.html

最新回复(0)