一种基于全纤芯MZI与FBG结合的光纤传感器其及制作方法与流程

专利2022-06-29  130


本发明属于光纤传感领域,更具体地,涉及一种基于全纤芯马赫-曾德尔干涉仪(mzi)与光纤布拉格光栅(fbg)结合的光纤传感器其及制作方法。



背景技术:

光纤曲率传感器由于其灵敏度高、抗干扰能力强等优点,在建筑健康监测、机械制造、医疗、能源勘探、航空、环境监测等领域受到广泛关注。越来越多的光纤曲率传感器被开发出来。

大多数光纤曲率传感器基于光纤光栅和光纤干涉仪。对于纯光纤光栅结构,包括光纤布拉格光栅(fbg)和长周期光纤光栅,它们通常受到多个参数的影响,曲率测试结果很容易受到其他外部因素的干扰。近年来,越来越多基于光纤干涉仪的曲率传感器被提出,其中大部分是基于光纤马赫-曾德尔干涉仪(mzi):一类用于曲率传感的光纤微结构mzi具有夹层结构,包括光纤拉锥、微腔、侧向偏移或熔接不同种类的光纤等,上述具有夹层结构的mzi通常鲁棒性差且制备工艺复杂;另一类是结合长周期光纤光栅构成的光纤微结构mzi。然而,现有这些基于mzi的曲率传感器的可测试曲率范围较为有限,大多不超过5m-1;而且,大多存在温度串扰问题,排除温度串扰的做法是增加额外的测温结构,从而使器件制备过程变得更加复杂,同时提高了生产成本。



技术实现要素:

针对现有技术的缺陷,本发明的目的在于提供一种基于全纤芯马赫-曾德尔干涉仪(mzi)与光纤布拉格光栅(fbg)结合的光纤传感器其及制作方法,旨在解决现有曲率传感器的可测试曲率范围较小和测量易受温度串扰的问题。

为实现上述目的,本发明的一方面提供了一种基于全纤芯mzi与fbg结合的光纤传感器,包括

折射率调制线构成的马赫-曾德尔干涉仪,位于光纤纤芯的偏心位置;

光纤布拉格光栅,位于所述光纤的纤芯中心;

所述马赫-曾德尔干涉仪和所述光纤布拉格光栅由激光器沿所述光纤轴向辐射形成。

进一步地,所述马赫-曾德尔干涉仪的长度可调。

进一步地,所述光纤布拉格光栅的反射波长可调。

进一步地,所述光纤为单模光纤。

进一步地,所述激光器为飞秒激光器。

本发明的另一方面还提供了一种基于全纤芯mzi与fbg结合的光纤传感器的制作方法,包括如下步骤:

将光纤置于三维移动平台上,使光纤的轴向垂直于激光光束的入射方向;

调整所述三维位移平台,使激光聚焦于光纤纤芯内偏心的位置上,同时激光设置为第一脉冲重复频率,控制三维移动平台使光纤沿轴向以第一速度匀速移动,所述三维移动平台停驻后,形成折射率调制线构成马赫-曾德尔干涉仪;

调整所述三维位移平台,使激光聚焦于光纤纤芯中心处,同时激光设置为第二脉冲重复频率,控制三维移动平台使光纤沿轴向以第二速度匀速移动,形成若干具有固定周期的点构成光纤布拉格光栅;

其中,所述第一脉冲重复频率不同于所述第二脉冲重复频率。

进一步地,通过调整所述第二脉冲重复频率和所述第二速度控制所述光纤布拉格光栅的反射波长。

优选地,所述第一脉冲重复频率为200千赫兹,所述第二脉冲重复频率为100赫兹。

通过本发明所构思的以上技术方案,与现有技术相比,能够取得以下有益效果:

(1)本发明提供的基于全纤芯mzi与fbg结合的光纤传感器中,全纤芯mzi的干涉光谱的对比度较高,且mzi的周期可通过mzi的长度进行调整,选择具有大周期干涉光谱的mzi可实现较大的曲率测试范围;同时,mzi的偏芯结构使得其可根据弯曲时的光谱响应判别弯曲方向。

(2)本发明提供的mzi与fbg结合的光纤传感器在不同的弯曲状态下,fbg共振峰的温度响应基本相同,因此该传感器可以实现曲率和温度的双参量传感,从而避免了曲率测量时的温度串扰问题。

(3)本发明传感器结构中的mzi和fbg都是采用飞秒激光直接在纤芯上刻写而成的,无需二次加工,制备工艺简单,可重复性高,极大地提高了器件的制作效率;同时,本发明不需要剥离光纤涂覆层就可以直接进行飞秒激光刻写,保证了光纤的完整性,提高了器件的鲁棒性和抗干扰能力。

附图说明

图1是本发明实施例制作的基于全纤芯mzi与fbg结合的光纤传感器的结构图;

图2是本发明实施例利用激光器制作加工光纤传感器的装置示意图;

图3是按照本发明实施例的制备方法加工出的全纤芯mzi与fbg结合的光纤传感器的光谱透射图;

图4是定义的全纤芯mzi与fbg结合的光纤传感器的弯曲方向;

图5是按照本发明实施例的制备方法加工出的全纤芯mzi与fbg结合的光纤传感器沿着0°和180°方向弯曲时的光谱响应;

图6是按照本发明实施例的制备方法加工出的全纤芯mzi与fbg结合的光纤传感器沿着90°和270°方向弯曲时的光谱响应;

图7是按照本发明实施例的制备方法加工出的全纤芯mzi与fbg结合的光纤传感器在曲率为0的状态下随温度变化的光谱响应;

图8是按照本发明实施例的制备方法加工出的全纤芯mzi与fbg结合的光纤传感器在曲率为10m-1的状态下随温度变化的光谱响应;

图9按照本发明实施例的制备方法加工出的全纤芯mzi与fbg结合的光纤传感器在曲率为-10m-1的状态下随温度变化的光谱响应。

附图标记说明11-单模光纤;12-mzi;13-fbg;22-三维位移平台;23-激光光束;24-显微物镜;25-激光器。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

如图1所示,本实施例提供的一种基于全纤芯mzi与fbg结合的光纤传感器包括单模光纤11、纤芯内偏心的折射率调制线构成的马赫-曾德尔干涉仪(mzi)12和一段位于纤芯中心的光纤布拉格光栅(fbg)13;

其中,mzi12和fbg13均由激光器沿着光纤轴向辐射形成,通过激光光束沿光纤轴向改变纤芯折射率来实现,且mzi12的长度和fbg13的反射波长可根据实际需求设定。

由于本发明实施例的传感器中mzi和fbg都是由飞秒激光直接刻写而成,所以不需要多工艺多步骤就可以实现双参量传感;由此制备得到的全纤芯mzi的干涉光谱的对比度较高,且mzi的周期可通过mzi的长度进行调整,选择具有大周期干涉光谱的mzi可以实现大的曲率测试范围;同时,由于该传感器中的mzi为偏芯结构,使得该传感器在不同方向上弯曲时光谱响应不同,可以利用该特性判别器件的弯曲方向,并且提高了曲率传感的灵敏度。

参见图2,实施例还提供了一种基于全纤芯mzi与fbg结合的光纤传感器的制作方法,包括如下步骤:

将光纤11置于三维移动平台22上,使光纤11的轴向垂直于激光光束23的入射方向;

通过显微镜观察并调整光纤11的位置,使激光器25输出的激光光束通过显微物镜24聚集于光纤11的纤芯;

调整三维位移平台22,使激光聚焦于光纤纤芯内偏心的位置上,同时激光器25设置合适的脉冲重复频率,控制三维移动平台使光纤11沿轴向以一定速度匀速移动,三维移动平台22停驻后,形成折射率调制线构成mzi;不同的长度对应于不同的自由光谱范围(fsr),实际应用中可以根据需求方便地制作不同长度的mzi;

调整三维位移平台22,使激光聚焦于光纤纤芯中心处,选择合适的脉冲重复频率(不同于制备mzi的脉冲重复频率),控制三维移动平台22使光纤11沿轴向以一定速度匀速移动,形成一系列具有固定周期的点,从而构成了fbg;脉冲的重复频率和光纤的移动速度决定了fbg的反射波长。

优选地,激光器25为飞秒激光器。

优选地,制备折射率调制线时激光器的重复频率设置为200千赫兹(khz),制备fbg时激光器的重复频率设置为100赫兹(hz),中心波长为520纳米(nm),脉冲宽度为350飞秒(fs)。

图3是按照本发明的制备方法所制备出的2mm折射率调制线和2mmfbg的光谱透射图,从图中可以看出该器件的插入损耗小于5db。

对本发明实施例提供的全纤芯mzi与fbg结合的光纤传感器进行弯曲传感实验。图4是定义的全纤芯mzi(长2毫米)与fbg(长2毫米,反射波长1318纳米)结合的光纤传感器的弯曲方向。当弯曲发生在0°时(如图5所示),mzi干涉峰波长发生红移,当发生在180°时,mzi干涉峰波长发生蓝移;当弯曲发生在90°和270°方向上时(如图6所示),mzi干涉峰波长几乎不发生漂移。实验表明,随着曲率变化,mzi干涉峰的波长发生移动,且移动的方向与曲率发生的方向有关。该传感器的曲率灵敏度约为1nm/m-1,测试范围大于0-10m-1,且fbg反射峰对弯曲不敏感。

此外,还对本发明实施例提供的全纤芯mzi(长2毫米)与fbg(长2毫米,反射波长1318纳米)结合的光纤传感器进行温度传感实验。图7、8、9是分别是全纤芯mzi与fbg结合的光纤传感器的在曲率c=0,c=10m-1,c=-10m-1时的温度响应,其中定义弯曲方向为0°时曲率为正,弯曲方向为180°时曲率为负。mzi干涉峰波长对温度无明显响应;fbg共振峰波长随温度升高发生红移,且fbg共振峰的温度响应与该器件的弯曲状态无关,因此fbg的温度响应不受弯曲状态的影响。

本发明中基于全纤芯mzi与fbg结合的光纤传感器的曲率测试范围广,受实验条件限制,只测试了0-10m-1的曲率范围,实际该传感器可测试的曲率范围更广。而且,本领域技术人员可以理解的是,上述的实施例仅仅列举了为单模光纤的情形,实际在加工过程中,本发明的方法不仅仅只适用于单模光纤。

本发明提出的基于全纤芯mzi和fbg结合光纤传感器中fbg和构成mzi的直波导都是由飞秒激光在未剥离涂覆层的光纤纤芯上直接刻写而成。与其他加工技术相比,飞秒激光直接刻写技术具有加工方便、加工精度高、参数调整方便、重复性好等突出优点。此外,光纤涂覆层没有被移除,进一步提高了该器件的坚固性。在传感性能方面,该器件具有良好的线性度和较大的曲率测量线性响应范围。此外,该器件的曲率响应与弯曲方向密切相关。温度测试结果表明,在不同的弯曲状态下,fbg共振峰的温度响应基本相同,因此fbg的温度响应不受弯曲状态的影响。与现有的曲率传感器相比,本发明具有曲率测量范围宽、实现实时温度传感、制作简单、重复性高、成本低、插入损耗低、鲁棒性强等突出优点。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。


技术特征:

1.一种基于全纤芯mzi与fbg结合的光纤传感器,其特征在于,包括折射率调制线构成的马赫-曾德尔干涉仪,位于光纤纤芯的偏心位置;

光纤布拉格光栅,位于所述光纤的纤芯中心;

所述马赫-曾德尔干涉仪和所述光纤布拉格光栅由激光器沿所述光纤轴向辐射形成。

2.如权利要求1所述的光纤传感器,其特征在于,所述马赫-曾德尔干涉仪的长度可调。

3.如权利要求1所述的光纤传感器,其特征在于,所述光纤布拉格光栅的反射波长可调。

4.如权利要求1-3任一项所述的光纤传感器,其特征在于,所述光纤为单模光纤。

5.如权利要求1-3任一项所述的光纤传感器,其特征在于,所述激光器为飞秒激光器。

6.一种基于全纤芯mzi与fbg结合的光纤传感器的制作方法,其特征在于,包括如下步骤:

将光纤置于三维移动平台上,使光纤的轴向垂直于激光光束的入射方向;

调整所述三维位移平台,使激光聚焦于光纤纤芯内偏心的位置上,同时激光设置为第一脉冲重复频率,控制三维移动平台使光纤沿轴向以第一速度匀速移动,所述三维移动平台停驻后,形成折射率调制线构成马赫-曾德尔干涉仪;

调整所述三维位移平台,使激光聚焦于光纤纤芯中心处,同时激光设置为第二脉冲重复频率,控制三维移动平台使光纤沿轴向以第二速度匀速移动,形成若干具有固定周期的点构成光纤布拉格光栅;

其中,所述第一脉冲重复频率不同于所述第二脉冲重复频率。

7.如权利要求6所述的制作方法,其特征在于,通过调整所述第二脉冲重复频率和所述第二速度控制所述光纤布拉格光栅的反射波长。

8.如权利要求6或7所述的制作方法,其特征在于,所述第一脉冲重复频率为200千赫兹,所述第二脉冲重复频率为100赫兹。

技术总结
本发明属于光纤传感领域,公开了一种基于全纤芯马赫‑曾德尔干涉仪(MZI)与光纤布拉格光栅(FBG)结合的光纤传感器其及制作方法。本发明公开的光纤传感器包括光纤、马赫‑曾德尔干涉仪和光纤布拉格光栅,折射率调制线构成的马赫‑曾德尔干涉仪位于光纤纤芯的偏心位置,光纤布拉格光栅位于所述光纤的纤芯中心;所述马赫‑曾德尔干涉仪和所述光纤布拉格光栅由激光器沿所述光纤轴向辐射形成。本发明可实现较大的曲率测试范围,避免了曲率测量时的温度串扰问题;而且,MZI的偏芯结构使得其可根据弯曲时的光谱响应判别弯曲方向。

技术研发人员:舒学文;赵蓉
受保护的技术使用者:华中科技大学
技术研发日:2020.03.18
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-14816.html

最新回复(0)