本发明涉及聚酰亚胺薄膜技术领域,尤其涉及一种高温尺寸稳定导热聚酰亚胺薄膜及其制备方法。
背景技术:
聚酰亚胺(pi)薄膜具有良好的耐高温、高强度、低介电等性能,广泛应用于电子、电气绝缘基材等方面。
随着电子信息技术的飞速发展,电子器件和集成电器的尺寸不断缩小,运行速度越来越快,从而散发出大量的热量。而热量的积聚会严重影响电子器件和电路运行的稳定性,甚至会带来安全隐患。
而常规用作电子电路绝缘基材的聚酰亚胺薄膜,其导热系数一般均低于0.2wm-1k-1,所制备器件散热效果不理想,长期处于高温状态,也会影响聚酰亚胺薄膜的尺寸稳定性。
技术实现要素:
基于背景技术存在的技术问题,本发明提出了一种高温尺寸稳定导热聚酰亚胺薄膜及其制备方法,本发明导热性好,高温时尺寸稳定。
本发明提出的一种高温尺寸稳定导热聚酰亚胺薄膜的制备方法,包括如下步骤:在惰性气体氛围中,向芳香型二胺溶液中加入填料混匀,然后加入芳香型二酐,进行反应,然后加入八(氨基苯基三氧硅烷)溶液,继续反应得到中间物料;取中间物料脱泡并涂布于基板表面,烘干,亚胺化,脱膜得到高温尺寸稳定导热聚酰亚胺薄膜,其中,填料为改性纳米氮化硼和改性纳米二氧化硅。
优选地,芳香型二胺为4,4'-二氨基二苯醚、对苯二胺、3,4'-二氨基二苯醚中的至少一种。
优选地,芳香型二酐为3,3',4,4'-联苯四甲酸二酐。
优选地,高温尺寸稳定导热聚酰亚胺薄膜中,填料的终含量为15-20wt%。
优选地,改性纳米氮化硼和改性纳米二氧化硅的重量比为8-9:1。
优选地,改性纳米氮化硼、改性纳米二氧化硅均是经3-氨基丙基三乙氧基硅烷改性制得。
优选地,改性纳米氮化硼的粒径为20-25nm。
优选地,改性纳米二氧化硅的粒径为10-15nm。
优选地,反应温度为40-60℃。
优选地,加入芳香型二酐,进行反应4-5h,然后加入八(氨基苯基三氧硅烷)溶液,继续反应1-1.5h。
优选地,烘干温度为110-130℃。
优选地,亚胺化的程序为:于240-260℃保温30-50min,再于320-340℃保温20-40min。
优选地,芳香型二胺、芳香型二酐和八(氨基苯基三氧硅烷)的摩尔比为1:0.9-0.95:0.01-0.02。
优选地,中间物料的固含量为15-25wt%。
优选地,芳香型二胺溶液的溶剂为n,n-二甲基乙酰胺或n-甲基吡咯烷酮。
优选地,八(氨基苯基三氧硅烷)溶液的溶剂为四氢呋喃。
本发明还提出一种高温尺寸稳定导热聚酰亚胺薄膜,按照上述高温尺寸稳定导热聚酰亚胺薄膜的制备方法制得。
本发明通过在制备中间物料即聚酰胺酸树脂的过程中,添加改性纳米氮化硼和改性纳米二氧化硅,增加本发明的导热性能;改性纳米氮化硼和改性纳米二氧化硅以适宜比例相互配合,并在3-氨基丙基三乙氧基硅烷的作用下均匀分散在中间物料中,且3-氨基丙基三乙氧基硅烷中氨基可以参与反应,使得填料与聚酰胺酸树脂紧密结合,进一步增加本发明的导热性能;并且适宜粒径的改性纳米氮化硼和改性纳米二氧化硅可以进一步增加本发明的导热性能;另外本发明在聚酰胺酸树脂的制备过程中,添加八(氨基苯基三氧硅烷)与芳香型二胺、芳香型二酐以适宜比例反应,促进聚酰胺酸树脂的交联,提高聚酰亚胺薄膜的热稳定性,降低聚酰亚胺薄膜的热膨胀系数,从而增加薄膜在高温时的尺寸稳定性;并且本发明的导热性能和低的热膨胀系数相互配合,可以使薄膜的高温迅速传导出去,降低薄膜的温度,从而进一步保持薄膜的高温尺寸稳定性,而低的热膨胀系数进一步增加本发明的导热性能。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种高温尺寸稳定导热聚酰亚胺薄膜的制备方法,包括如下步骤:在氮气氛围中,向4,4'-二氨基二苯醚的n,n-二甲基乙酰胺溶液中加入填料混匀,然后加入3,3',4,4'-联苯四甲酸二酐,于40℃反应5h,然后加入八(氨基苯基三氧硅烷)的四氢呋喃溶液,继续反应1.5h,然后用n,n-二甲基乙酰胺调节固含量为25wt%得到中间物料;取中间物料脱泡并涂布于基板表面,于110℃烘干,然后于260℃保温30min,再于340℃保温20min进行亚胺化,脱膜得到高温尺寸稳定导热聚酰亚胺薄膜,其中,填料为粒径为20-25nm的3-氨基丙基三乙氧基硅烷改性纳米氮化硼和粒径为10-15nm的3-氨基丙基三乙氧基硅烷改性纳米二氧化硅;
3-氨基丙基三乙氧基硅烷改性纳米氮化硼和3-氨基丙基三乙氧基硅烷改性纳米二氧化硅的重量比为9:1;
高温尺寸稳定导热聚酰亚胺薄膜中,填料的终含量为15wt%;
4,4'-二氨基二苯醚、3,3',4,4'-联苯四甲酸二酐和八(氨基苯基三氧硅烷)的摩尔比为1:0.95:0.01。
实施例2
一种高温尺寸稳定导热聚酰亚胺薄膜的制备方法,包括如下步骤:在氮气氛围中,向对苯二胺的n,n-二甲基乙酰胺溶液中加入填料混匀,然后加入3,3',4,4'-联苯四甲酸二酐,于60℃反应4h,然后加入八(氨基苯基三氧硅烷)的四氢呋喃溶液,继续反应1h,然后用n,n-二甲基乙酰胺调节固含量为15wt%得到中间物料;取中间物料脱泡并涂布于基板表面,于130℃烘干,然后于240℃保温50min,再于320℃保温40min进行亚胺化,脱膜得到高温尺寸稳定导热聚酰亚胺薄膜,其中,填料为粒径为20-25nm的3-氨基丙基三乙氧基硅烷改性纳米氮化硼和粒径为10-15nm的3-氨基丙基三乙氧基硅烷改性纳米二氧化硅;
3-氨基丙基三乙氧基硅烷改性纳米氮化硼和3-氨基丙基三乙氧基硅烷改性纳米二氧化硅的重量比为8:1;
高温尺寸稳定导热聚酰亚胺薄膜中,填料的终含量为20wt%;
对苯二胺、3,3',4,4'-联苯四甲酸二酐和八(氨基苯基三氧硅烷)的摩尔比为1:0.9:0.02。
实施例3
一种高温尺寸稳定导热聚酰亚胺薄膜的制备方法,包括如下步骤:在氮气氛围中,向3,4'-二氨基二苯醚的n-甲基吡咯烷酮溶液中加入填料混匀,然后加入3,3',4,4'-联苯四甲酸二酐,于45℃反应4.8h,然后加入八(氨基苯基三氧硅烷)的四氢呋喃溶液,继续反应1.4h,然后用n-甲基吡咯烷酮调节固含量为18wt%得到中间物料;取中间物料脱泡并涂布于基板表面,于125℃烘干,然后于245℃保温45min,再于325℃保温35min进行亚胺化,脱膜得到高温尺寸稳定导热聚酰亚胺薄膜,其中,填料为粒径为20-25nm的3-氨基丙基三乙氧基硅烷改性纳米氮化硼和粒径为10-15nm的3-氨基丙基三乙氧基硅烷改性纳米二氧化硅;
3-氨基丙基三乙氧基硅烷改性纳米氮化硼和3-氨基丙基三乙氧基硅烷改性纳米二氧化硅的重量比为8.2:1;
高温尺寸稳定导热聚酰亚胺薄膜中,填料的终含量为18wt%;
3,4'-二氨基二苯醚、3,3',4,4'-联苯四甲酸二酐和八(氨基苯基三氧硅烷)的摩尔比为1:0.92:0.018。
实施例4
一种高温尺寸稳定导热聚酰亚胺薄膜的制备方法,包括如下步骤:在氮气氛围中,向4,4'-二氨基二苯醚的n-甲基吡咯烷酮溶液中加入填料混匀,然后加入3,3',4,4'-联苯四甲酸二酐,于55℃反应4.2h,然后加入八(氨基苯基三氧硅烷)的四氢呋喃溶液,继续反应1.2h,然后用n-甲基吡咯烷酮调节固含量为22wt%得到中间物料;取中间物料脱泡并涂布于基板表面,于115℃烘干,然后于255℃保温35min,再于335℃保温25min进行亚胺化,脱膜得到高温尺寸稳定导热聚酰亚胺薄膜,其中,填料为粒径为20-25nm的3-氨基丙基三乙氧基硅烷改性纳米氮化硼和粒径为10-15nm的3-氨基丙基三乙氧基硅烷改性纳米二氧化硅;
3-氨基丙基三乙氧基硅烷改性纳米氮化硼和3-氨基丙基三乙氧基硅烷改性纳米二氧化硅的重量比为8.8:1;
高温尺寸稳定导热聚酰亚胺薄膜中,填料的终含量为16wt%;
4,4'-二氨基二苯醚、3,3',4,4'-联苯四甲酸二酐和八(氨基苯基三氧硅烷)的摩尔比为1:0.94:0.012。
实施例5
一种高温尺寸稳定导热聚酰亚胺薄膜的制备方法,包括如下步骤:在氮气氛围中,向3,4'-二氨基二苯醚的n,n-二甲基乙酰胺溶液中加入填料混匀,然后加入3,3',4,4'-联苯四甲酸二酐,于50℃反应4.5h,然后加入八(氨基苯基三氧硅烷)的四氢呋喃溶液,继续反应1.3h,然后用n,n-二甲基乙酰胺调节固含量为20wt%得到中间物料;取中间物料脱泡并涂布于基板表面,于120℃烘干,然后于250℃保温40min,再于330℃保温30min进行亚胺化,脱膜得到高温尺寸稳定导热聚酰亚胺薄膜,其中,填料为粒径为20-25nm的3-氨基丙基三乙氧基硅烷改性纳米氮化硼和粒径为10-15nm的3-氨基丙基三乙氧基硅烷改性纳米二氧化硅;
3-氨基丙基三乙氧基硅烷改性纳米氮化硼和3-氨基丙基三乙氧基硅烷改性纳米二氧化硅的重量比为8.5:1;
高温尺寸稳定导热聚酰亚胺薄膜中,填料的终含量为17wt%;
3,4'-二氨基二苯醚、3,3',4,4'-联苯四甲酸二酐和八(氨基苯基三氧硅烷)的摩尔比为1:0.93:0.015。
对比例1
无填料,其他同实施例5。
对比例2
无八(氨基苯基三氧硅烷),其他同实施例5。
对比例3
无填料,无八(氨基苯基三氧硅烷),其他同实施例5。
检测实施例1-5和对比例1-3制得的聚酰亚胺薄膜的性能,结果如下表所示:
由上表可以看出,本发明在保持良好机械性能的同时,具有良好的导热率、高温尺寸稳定性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
1.一种高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,包括如下步骤:在惰性气体氛围中,向芳香型二胺溶液中加入填料混匀,然后加入芳香型二酐,进行反应,然后加入八(氨基苯基三氧硅烷)溶液,继续反应得到中间物料;取中间物料脱泡并涂布于基板表面,烘干,亚胺化,脱膜得到高温尺寸稳定导热聚酰亚胺薄膜,其中,填料为改性纳米氮化硼和改性纳米二氧化硅。
2.根据权利要求1所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,芳香型二胺为4,4'-二氨基二苯醚、对苯二胺、3,4'-二氨基二苯醚中的至少一种;优选地,芳香型二酐为3,3',4,4'-联苯四甲酸二酐。
3.根据权利要求1或2所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,高温尺寸稳定导热聚酰亚胺薄膜中,填料的终含量为15-20wt%;优选地,改性纳米氮化硼和改性纳米二氧化硅的重量比为8-9:1。
4.根据权利要求1-3任一项所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,改性纳米氮化硼、改性纳米二氧化硅均是经3-氨基丙基三乙氧基硅烷改性制得。
5.根据权利要求1-4任一项所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,改性纳米氮化硼的粒径为20-25nm;优选地,改性纳米二氧化硅的粒径为10-15nm。
6.根据权利要求1-5任一项所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,反应温度为40-60℃;优选地,加入芳香型二酐,进行反应4-5h,然后加入八(氨基苯基三氧硅烷)溶液,继续反应1-1.5h。
7.根据权利要求1-6任一项所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,烘干温度为110-130℃;优选地,亚胺化的程序为:于240-260℃保温30-50min,再于320-340℃保温20-40min。
8.根据权利要求1-7任一项所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,芳香型二胺、芳香型二酐和八(氨基苯基三氧硅烷)的摩尔比为1:0.9-0.95:0.01-0.02;优选地,中间物料的固含量为15-25wt%。
9.根据权利要求1-8任一项所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法,其特征在于,芳香型二胺溶液的溶剂为n,n-二甲基乙酰胺或n-甲基吡咯烷酮;优选地,八(氨基苯基三氧硅烷)溶液的溶剂为四氢呋喃。
10.一种高温尺寸稳定导热聚酰亚胺薄膜,其特征在于,按照权利要求1-9任一项所述高温尺寸稳定导热聚酰亚胺薄膜的制备方法制得。
技术总结