一种噪声环境下多维力传感器的解耦方法与流程

专利2022-06-29  104


本发明涉及多维力传感器数据采集领域,特别是涉及一种噪声环境下多维力传感器的解耦方法。



背景技术:

多维力传感器广泛应用于机器人手指、手爪研究;机器人外科手术研究;指力研究;牙齿研究;力反馈;刹车检测;精密装配、切削;复原研究;整形外科研究;产品测试;触觉反馈;示教学习。行业覆盖了机器人、汽车制造、自动化流水线装配、生物力学、航空航天、轻纺工业等领域。多维力传感器的存在的耦合误差影响了其检测精度,同时也限制了其在高精度测量与控制领域的应用。

目前来看,优化传感器结构和增强解耦算法是提高多维力传感器精度的两大有效途径,但多维力传感器结构受到诸如机械加工误差,应变片贴片位置等因素影响,给精度的提高带来了一定的不确定性。从现阶段来看,在算法层面上校正传感器的耦合误差有着成本低廉,可行性高等优点,这也受到了大量学者的追捧。实际多维力传感器大多工作于噪声环境下,而这些噪声对传感器采集的数据会产生影响,由此可见,增强传感器在噪声环境下的鲁棒性对提高传感器精度有着重要的意义。

国内涉及多维力传感器解耦方法的专利有“基于遗传算法的多维力传感器标定实验数据拟合方法”(201610232792.4),通过推导传感器耦合误差理论模型的系数求解公式,而后利用遗传算法在matlab软件上进行全局最优解的确定,从而解决数据拟合问题,但该专利中的遗传算法求得的最优解可能是局部最优而非全局最优,导致拟合误差增大。国家发明专利“一种多维力传感器动态解耦方法”(201910160583.7),该方法首先对传感器进行动态测试,而后对输出信号进行动态补偿,最后将经过补偿后的信号带入解耦模型中以实现解耦,但是该方法中并没有考虑到实际工业环境下嘈杂的噪声对传感器采集数据的影响,在实际应用中可能存在一定的局限性。由此可见,设计一个具有良好鲁棒性的多维力传感器是非常有必要的。



技术实现要素:

为解决上述问题,本发明结合改进后的深度神经网络,提出了一种噪声环境下多维力传感器的解耦方法。为尽可能的降低环境噪声对传感器采集的数据的影响,本发明通过对采集到的标定数据进行加噪处理以模拟真实环境噪声干扰,同时将多组加噪后的数据首尾依次拼接增加数据的维度,避免了模型因训练样本维度过低而造成的过拟合,同时增强了模型对不同噪声的适应性。最终将训练好的模型嵌入传感器采集系统中,增强多维力传感器在噪声环境下数据采集的鲁棒性。为达此目的,本发明提供一种噪声环境下多维力传感器的解耦方法,具体步骤如下,其特征在于:

步骤1,通过信号调理电路和采集系统获取传感器输出电压u与标准砝码重量(力)f相对应的标定数据;

步骤2,将步骤1中获得的标定数据添加噪声,其中信噪比控制在20~30db之间;

步骤3,将步骤2中生成的多组噪声样本顺序依次拼接,同时进行归一化处理,形成新的数据样本;

步骤4,将步骤3中获取的样本输入到深度神经网络(dnn)中进行训练,并判断是否达到模型收敛的条件,若达到条件,跳转至步骤4,否则继续执行步骤2;

步骤5,模型训练结束,并将训练得到的模型嵌入传感器采集系统,最终应用于实际工业现场。

进一步,步骤1中传感器输出电压u与力f在简化模型中满足:

式中,c为权重系数矩阵,b为偏重系数矩阵。上式可简化为uc b=f,对实际应用来说,u与f之间的映射模型更加复杂。

进一步,步骤2中获得加噪数据的过程可以表示为:

uprocess=unoise u

式中,u为原始电压数据,unoise为高斯白噪声数据,uprocess表示加噪后得到的数据。

信噪比的定义如下:

式中,ps表示信号的功率,pn表示噪声的功率。

进一步,步骤3中样本数据的归一化处理至[0,1]可以表示为:

式中,unor为归一化后的数据,min和max分别表示最小值和最大值。

进一步,步骤4中dnn训练过程的具体步骤为:

步骤4.1,根据dnn的输出fo和输入u对应的实际值f,求得dnn的损失函数,本发明采用均方根误差损失函数,其表达式如下:

式中,n表示训练样本总数,k表示力传感器的采集维数。

步骤4.2,利用梯度下降法反向修正dnn的各连接层之间的权重系数w:

式中,α为模型的学习率。

步骤4.3,利用梯度下降法反向修正dnn的各连接层之间的偏置系数b:

步骤4.4,如果损失函数e小于e-4或得到迭代终止次数,则认为模型训练完成,否则继续执行步骤4。

本发明一种噪声环境下多维力传感器的解耦方法,有益效果:本发明的技术效果在于:

1.本发明通过合理的对标定数据添加合适的高斯白噪声,有效的模拟了多维力传感器在噪声环境下所采集数据的受到的干扰;

2.本发明将多组加噪后的数据首尾依次拼接增加数据的维度,避免了模型因训练样本维度过低而造成的过拟合,同时增强了模型对不同噪声的适应性;

3.本发明在传统的dnn基础上加以改进,较传统的最小二乘法能更加准确的构建多维力传感器输出电压u与力f之间的映射模型,同时很好的提高了模型在噪声环境下的鲁棒性。

附图说明

图1为本发明的流程图;

图2为本发明改进后的dnn模型网络结构图;

图3为将传感器采集到的数据输入dnn中得到的损失函数随迭代次数变化的曲线。

具体实施方式

下面结合附图与具体实施方式对本发明作进一步详细描述:

本发明提出了一种噪声环境下多维力传感器的解耦方法,旨在增强多维力传感器在噪声环境下的鲁棒性,提高数据采集的精度。图1为本发明的流程图。下面结合流程图对本发明的步骤作详细介绍。

步骤1,通过信号调理电路和采集系统获取传感器输出电压u与标准砝码重量(力)f相对应的标定数据;

步骤1中传感器输出电压u与力f在简化模型中满足:

式中,c为权重系数矩阵,b为偏重系数矩阵。上式可简化为uc b=f,对实际应用来说,u与f之间的映射模型更加复杂。

步骤2,将步骤1中获得的标定数据添加噪声,其中信噪比控制在20~30db之间;

步骤2中获得加噪数据的过程可以表示为:

uprocess=unoise u

式中,u为原始电压数据,unoise为高斯白噪声数据,uprocess表示加噪后得到的数据。

信噪比的定义如下:

式中,ps表示信号的功率,pn表示噪声的功率。

步骤3,将步骤2中生成的多组噪声样本顺序依次拼接,同时进行归一化处理,形成新的数据样本;

步骤3中样本数据的归一化处理至[0,1]可以表示为:

式中,unor为归一化后的数据,min和max分别表示最小值和最大值。

步骤4,将步骤3中获取的样本输入到深度神经网络(dnn)中进行训练,并判断是否达到模型收敛的条件,若达到条件,跳转至步骤4,否则继续执行步骤2;

步骤4中dnn训练过程的具体步骤为:

步骤4.1,根据dnn的输出fo和输入u对应的实际值f,求得dnn的损失函数,本发明采用均方根误差损失函数,其表达式如下:

式中,n表示训练样本总数,k表示力传感器的采集维数。

步骤4.2,利用梯度下降法反向修正dnn的各连接层之间的权重系数w:

式中,α为模型的学习率。

步骤4.3,利用梯度下降法反向修正dnn的各连接层之间的偏置系数b:

步骤4.4,如果损失函数e小于e-4或得到迭代终止次数,则认为模型训练完成,否则继续执行步骤4。

步骤5,模型训练结束,并将训练得到的模型嵌入传感器采集系统,最终应用于实际工业现场。

图2为本发明改进后的dnn模型网络结构图。该结构图中可简化为四大层:输入层、加噪处理层、隐含层(1和2)和输出层,其中的加噪处理层使用高斯白噪声生成4个加噪样本,而后依次将加噪样本拼接作为新的样本输入到隐含层中,最后利用均方根误差损失函数和梯度下降法完成对模型的训练。该模型能够很好的在噪声环境下对传感器采集到的数据进行解耦,其中的加噪处理层有效的模拟了多维力传感器在噪声环境下受到的干扰;同时通过增加dnn训练样本维度的方式,在一定程度上解决了因样本维度过低而造成的模型过拟合问题,提高了模型的泛化性。

图3为将传感器采集到的标定数据输入dnn中得到的损失函数随迭代次数变化的曲线。可以看出,损失函数随着迭代次数的增加逐渐降低直至收敛,这也验证了本文所提的模型在实际应用中是可行的有效的。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。


技术特征:

1.一种噪声环境下多维力传感器的解耦方法,具体步骤如下,其特征在于:

步骤1,通过信号调理电路和采集系统获取传感器输出电压u与标准砝码重量(力)f相对应的标定数据;

步骤2,将步骤1中获得的标定数据添加噪声,其中信噪比控制在20~30db之间;

步骤3,将步骤2中生成的多组噪声样本顺序依次拼接,同时进行归一化处理,形成新的数据样本;

步骤4,将步骤3中获取的样本输入到深度神经网络(dnn)中进行训练,并判断是否达到模型收敛的条件,若达到条件,跳转至步骤4,否则继续执行步骤2;

步骤5,模型训练结束,并将训练得到的模型嵌入传感器采集系统,最终应用于实际工业现场。

2.根据权利要求1所述的一种噪声环境下多维力传感器的解耦方法,其特征在于:步骤1中传感器输出电压u与力f在简化模型中满足:

式中,c为权重系数矩阵,b为偏重系数矩阵。上式可简化为uc b=f,对实际应用来说,u与f之间的映射模型更加复杂。

3.根据权利要求1所述的一种噪声环境下多维力传感器的解耦方法,其特征在于:步骤2中获得加噪数据的过程可以表示为:

uprocess=unoise u

式中,u为原始电压数据,unoise为高斯白噪声数据,uprocess表示加噪后得到的数据。

信噪比的定义如下:

式中,ps表示信号的功率,pn表示噪声的功率。

4.根据权利要求1所述的一种噪声环境下多维力传感器的解耦方法,其特征在于:步骤3中样本数据的归一化处理至[0,1]可以表示为:

式中,unor为归一化后的数据,min和max分别表示最小值和最大值。

5.根据权利要求1所述的一种噪声环境下多维力传感器的解耦方法,其特征在于:步骤4中dnn训练过程的具体步骤为:

步骤4.1,根据dnn的输出fo和输入u对应的实际值f,求得dnn的损失函数,本发明采用均方根误差损失函数,其表达式如下:

式中,n表示训练样本总数,k表示力传感器的采集维数。

步骤4.2,利用梯度下降法反向修正dnn的各连接层之间的权重系数w:

式中,α为模型的学习率。

步骤4.3,利用梯度下降法反向修正dnn的各连接层之间的偏置系数b:

步骤4.4,如果损失函数e小于e-4或得到迭代终止次数,则认为模型训练完成,否则继续执行步骤4。

技术总结
一种噪声环境下多维力传感器的解耦方法。该方法包括以下步骤:步骤1,通过信号调理电路和采集系统获取传感器输出电压U与标准砝码重量(力)F相对应的标定数据;步骤2,将步骤1中获得的标定数据添加噪声,其中信噪比控制在20~30dB之间;步骤3,将步骤2中生成的多组噪声样本顺序依次拼接,同时进行归一化处理,形成新的数据样本;步骤4,将步骤3中获取的样本输入到深度神经网络(DNN)中进行训练,并判断是否达到模型收敛的条件,若达到条件,跳转至步骤4,否则继续执行步骤2;步骤5,模型训练结束,并将训练得到的模型嵌入传感器采集系统,最终应用于实际工业现场。本发明提高了传感器在噪声环境下的鲁棒性,具有良好的实际应用价值。

技术研发人员:杨忠;宋爱国;徐宝国;余振中;田小敏
受保护的技术使用者:金陵科技学院
技术研发日:2020.02.14
技术公布日:2020.06.09

转载请注明原文地址: https://bbs.8miu.com/read-13163.html

最新回复(0)