本发明是关于一种高导热半固化片(highthermalconductivityprepreg),特别是关于一种包括经预处理的高导热补强材料的半固化片。本发明高导热半固化片可进一步制成金属箔积层板及印刷电路板。
背景技术:
近年来,因电子通讯技术领域中对于资料传输量及传输速度的要求不断提高,电子产品被要求具有更小的体积、更轻的重量及更高的密度。随着电子产品越趋小型化、轻量化、高密度化,对电子材料的物化性质要求也随之提升,其中,电子产品的高密度化使得电子产品每单位体积所产生的热能增加。在电子材料的散热性不佳的情况下,电子产品中的元件会长期受热而使其劣化加速,从而使得电子产品的工作稳定性及可靠性变差。为了满足更严格的散热性要求,电子材料须具备更高的导热系数。
一般而言,金属箔积层板是由介电层与导电层交互层合而形成,其中介电层通常通过将树脂组合物附着于补强材料上而制得,而导电层则为金属箔。现有的用于提高电子材料的导热系数的做法包括在树脂组合物中使用导热性较佳的树脂或增加高导热填料的添加量以制成高导热半固化片,所述高导热填料包括但不限于氮化铝、氮化硼或氧化铝。然而,导热性较佳的树脂不仅价格昂贵,在导热性提升上更有其极限,仍难以达到适合高密度电子产品的导热性;而树脂组合物中包括大量的高导热填料则容易导致由树脂组合物所制得的半固化片与金属箔之间的黏着性变差,且于树脂组合物制成半固化片时可能出现掉粉的情形,不利于电子产品的制备。
cn1970667a公开了一种al2o3/bn复合粉体导热填料的制备方法,其中利用溶胶-凝胶法来制备经bn包覆的纳米al2o3粉体。然而,即使在树脂组合物中将现有的高导热填料替换为经bn包覆的纳米al2o3粉体,仍无法避免由大量填料所引起的掉粉情形。
cn105862395a公开了一种高导热系数玻璃纤维布,其是通过将玻璃纤维布含浸于含有导热填料(氧化铝及氮化硼)的胶液中、将含浸后的玻璃纤维布通过挤压辊挤压、再将挤压后的玻璃纤维布烘干而制得。然而其缺点在于,高导热填料受到胶液包覆,无法直接接触玻璃纤维布且无法均匀分散于玻璃纤维布的表面上,导致玻璃纤维布的导热系数难以有效地被提高。
因此,目前仍需要一种具有高导热系数的补强材料以及由此制得的高导热半固化片。
技术实现要素:
有鉴于上述技术问题,本发明提供一种高导热半固化片,其中利用溶胶-凝胶法来制备含有高导热成分的预处理液,之后利用该含有高导热成分的预处理液来预处理补强材料,使高导热成分均匀地直接附着于补强材料上,以形成高导热补强材料,由此制得的半固化片可具有高导热系数以及优异的可加工性,适合用于高密度电子材料的制备。
因此,本发明的一目的在于提供一种高导热半固化片,其包括一高导热补强材料及一形成于该高导热补强材料表面的介电材料层,其中该高导热补强材料是通过包括以下步骤的方法所制得:
(a)提供一前驱物水溶液,该前驱物水溶液包括一选自以下群组的前驱物:有机盐类、无机盐类及其组合;
(b)使该前驱物水溶液进行水解反应,形成一中间产物水溶液;
(c)使该中间产物水溶液进行缩合聚合反应,形成一预处理液;
(d)使一补强材料含浸该预处理液;以及
(e)烘干该经含浸的补强材料,得到该高导热补强材料。
于本发明的部分实施方案中,该有机盐类是选自以下群组:甲醇铝、乙醇铝、异丙醇铝、丁醇铝、醋酸锌及醋酸镁。
于本发明的部分实施方案中,该无机盐类为硝酸锌或硝酸铝。
于本发明的部分实施方案中,该前驱物为有机盐类与无机盐类的组合,且有机盐类的莫耳数对无机盐类的莫耳数的比例为1:1至5:1。
于本发明的部分实施方案中,该方法还包括于步骤(c)前,于该中间产物水溶液中添加一选自以下群组的添加剂:双-2-乙基己基磺基琥珀酸钠(sodiumbis-2-ethylhexylsulfosuccinate)、十二烷基苯磺酸钠(sodiumdodecylbenzenesulfonate)及其组合。
于本发明的部分实施方案中,步骤(c)的缩合聚合反应是于20℃至90℃下进行。
于本发明的部分实施方案中,步骤(e)的烘干时间为1至20分钟,较佳为5至15分钟,更佳为5至10分钟,且步骤(e)的烘干温度为300℃至700℃,较佳为400℃至700℃,更佳为400℃至600℃,特别佳为450℃至550℃。
于本发明的部分实施方案中,该补强材料为玻璃纤维布,其中玻璃纤维布可为织物或非织物,且玻璃纤维布可为选自以下群组的一种:e级玻璃纤维布(e-glassfibercloth)、ne级玻璃纤维布(ne-glassfibercloth)、q级玻璃纤维布(q-glassfibercloth)、d级玻璃纤维布(d-glassfibercloth)、s级玻璃纤维布(s-glassfibercloth)、t级玻璃纤维布(t-glassfibercloth)及l级玻璃纤维布(l-glassfibercloth)。
于本发明的部分实施方案中,该介电材料层是一热固性树脂组合物的固化产物,其中该热固性树脂组合物包括一热固性树脂及一根据需要的硬化剂。
于本发明的部分实施方案中,该热固性树脂组合物还包括选自以下群组的至少一种:催化剂、阻燃剂、填料、分散剂及增韧剂。
本发明的另一目的在于提供一种金属箔积层板,其是通过将如上所述的高导热半固化片与金属箔加以层合而制得。
本发明的又一目的在于提供一种印刷电路板,其是由如上所述的金属箔积层板所制得。
本发明的再一目的在于提供一种制备高导热半固化片的方法,该方法包括:
(a)提供一前驱物水溶液,该前驱物水溶液包括一选自以下群组的前驱物:有机盐类、无机盐类及其组合;
(b)使该前驱物水溶液进行水解反应,形成一中间产物水溶液;
(c)使该中间产物水溶液进行缩合聚合反应,形成一预处理液;
(d)使一补强材料含浸该预处理液;
(e)烘干该经含浸的补强材料,得到该高导热补强材料;以及
(f)于该高导热补强材料的表面形成一介电材料层,得到一高导热半固化片。
于本发明的部分实施方案中,该有机盐类是选自以下群组:甲醇铝、乙醇铝、异丙醇铝、丁醇铝、醋酸锌及醋酸镁。
于本发明的部分实施方案中,该无机盐类为硝酸锌或硝酸铝。
于本发明的部分实施方案中,该前驱物为有机盐类与无机盐类的组合,且有机盐类的莫耳数对无机盐类的莫耳数的比例为1:1至5:1。
于本发明的部分实施方案中,还包括于步骤(c)前,于该中间产物水溶液中添加一选自以下群组的添加剂:双-2-乙基己基磺基琥珀酸钠、十二烷基苯磺酸钠及其组合。
于本发明的部分实施方案中,步骤(c)的缩合聚合反应是于20℃至90℃下进行。
于本发明的部分实施方案中,步骤(e)的烘干时间为1至20分钟,较佳为5至15分钟,更佳为5至10分钟,且步骤(e)的烘干温度为300℃至700℃,较佳为400℃至700℃,更佳为400℃至600℃,特别佳为450℃至550℃。
于本发明的部分实施方案中,该补强材料为玻璃纤维布,其中玻璃纤维布可为织物或非织物,且玻璃纤维布可为选自以下群组的一种:e级玻璃纤维布、ne级玻璃纤维布、q级玻璃纤维布、d级玻璃纤维布、s级玻璃纤维布、t级玻璃纤维布及l级玻璃纤维布。
为使本发明的上述目的、技术特征及优点能更明显易懂,下文以部分具体实施方案进行详细说明。
具体实施方式
以下将具体地描述根据本发明的部分具体实施方案;但是,在不背离本发明的精神下,本发明还可以多种不同形式的方案来实践,不应将本发明保护范围限于所述具体实施方案。
除非文中有另外说明,于本说明书中(尤其是在权利要求书中)所使用的“一”、“该”及类似用语应理解为包括单数及复数形式。
除非文中有另外说明,于本说明书中描述溶液、混合物或组合物中所含的成分时,是以固含量(dryweight)计算,即,未纳入溶剂的重量。
现有的高导热半固化片通常通过将大量的高导热填料添加于树脂组合物中并由所述树脂组合物来制备。然而,大量的高导热填料难以均匀分布于树脂组合物中而使得所制半固化片无法具备均匀的导热性,且填料的高硬度使得所制半固化片的加工性不佳,在后续加工时容易发生掉粉。本发明对照现有技术的功效在于,利用溶胶-凝胶法制备含有高导热成分的预处理液并通过该预处理液来预处理补强材料,使得高导热成分可均匀地直接分布于补强材料的表面上,由此可制备具有优异导热性及加工性的半固化片,不会发生掉粉问题。以下配合部分实施方案进一步说明本发明高导热半固化片及其相关应用。
1.高导热半固化片
1.1.高导热补强材料
本发明高导热半固化片包括一高导热补强材料及一形成于该高导热补强材料表面的介电材料层。高导热补强材料是通过利用一含有高导热成分的预处理液来预处理一补强材料而制得。具体言之,高导热补强材料可通过包括以下步骤的方法制得:
(a)提供一前驱物水溶液,该前驱物水溶液包括一选自以下群组的前驱物:有机盐类、无机盐类及其组合;
(b)使该前驱物水溶液进行水解反应,形成一中间产物水溶液;
(c)使该中间产物水溶液进行缩合聚合反应,形成一预处理液;
(d)使一补强材料含浸该预处理液;以及
(e)烘干该经含浸的补强材料,得到该高导热补强材料。
1.1.1.制备高导热补强材料的步骤(a)至(c)
步骤(a)至(c)是有关含有高导热成分的预处理液的制备,其中高导热成分通过溶胶-凝胶法制备且均匀分布于预处理液中。本申请中,溶胶-凝胶法是一种湿式化学反应方法,其中前驱物在水溶液中进行水解反应而形成中间产物水溶液,中间产物水溶液进行缩合反应而形成含有均匀分散的微小胶体粒子的中间产物水溶液(被称为“溶胶”),随后部分的微小胶体粒子聚合并凝胶化而形成网络状胶体,由此得到含有网络状胶体(被称为“凝胶”)的水溶液。因此,本申请中,前驱物泛指可通过溶胶-凝胶法进行水解及聚合反应而形成高导热成分的物质。水解产物是前驱物行水解反应后的产物。预处理液是指通过溶胶-凝胶法所制得的含有网络状胶体(即,凝胶)的水溶液,高导热成分是指含有网络状胶体的水溶液经烘干步骤后所得的产物。
前驱物的实例包括但不限于有机盐类、无机盐类及其组合。有机盐类包括但不限于金属醇盐类、金属羧酸盐类、金属磺酸盐类及金属烷基盐类,例如甲醇铝、乙醇铝、异丙醇铝、丁醇铝、醋酸锌及醋酸镁。无机盐类包括但不限于金属硝酸盐类、金属硫酸盐类、金属碳酸盐类及金属氯化盐类,例如硝酸锌及硝酸铝。于本发明的部分实施方案中,为制得纳米尺度的高导热成分,前驱物是有机盐类与无机盐类的组合,例如甲醇铝与硝酸铝的组合、乙醇铝与硝酸铝的组合、异丙醇铝与硝酸铝的组合、丁醇铝与硝酸铝的组合或醋酸锌与硝酸锌的组合。于后附实施例中,是使用异丙醇铝与硝酸铝的组合。
当前驱物为有机盐类与无机盐类的组合时,有机盐类的莫耳数对无机盐类的莫耳数的比例一般而言可为1:1至5:1,较佳为2:1至4:1,更佳为2.5:1至3.5:1,例如2.6:1、2.7:1、2.8:1、2.9:1、3:1、3.1:1、3.2:1、3.3:1或3.4:1。
以金属醇盐类为例,前述溶胶-凝胶法涉及以下反应:
于反应式(1)、(2-1)及(2-2)中,m代表金属,r代表烷基(cxh2x 1,其中x为正整数),-or代表醇基,且roh代表醇类。于反应式(1)中,向右为水解反应,其中当金属醇盐溶于水后,金属醇盐的醇基与水的氢氧根置换而形成金属氢氧化物及醇。于反应式(2-1)中,向右为脱水缩合反应,其中两个金属氢氧化物之间进行脱水缩合反应以形成金属氧化物。于反应式(2-2)中,向右为脱醇缩合反应(dealcoholizationcondensationreaction),其中金属醇盐与金属氢氧化物之间进行脱醇缩合反应以形成金属氧化物。在溶胶-凝胶法中,缩合反应并非于水解反应全部完成后才进行,而是当水溶液中存在有m-oh后即开始进行。因此,在大部分反应时间内,缩合反应实际上是与水解反应同时进行。
于步骤(a)中,前驱物水溶液是通过使前驱物溶解或均匀分散于一溶剂中而获得。可使前驱物溶解或均匀分散的溶剂的实例包括但不限于水、醇类、醚类、酮类及烃类。醇类的实例包括但不限于甲醇、乙醇、正丙醇及异丙醇。
于步骤(b)中,可通过搅拌前驱物水溶液以利进行水解反应。水解反应的反应时间并无特殊限制,本发明所属技术领域普通技术人员可依前驱物的种类而根据情况调整,一般而言可为1小时至120小时,但本发明不限于此。
于步骤(c)中,可通过搅拌中间产物水溶液以利进行缩合聚合反应。进行步骤(c)的温度及反应时间并无特殊限制,本发明所属技术领域普通技术人员可依前驱物的种类而根据情况调整。一般而言,缩合聚合反应可在20℃至90℃下进行,例如25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃或85℃,且缩合聚合反应的反应时间可为1小时至60小时,但本发明并不限于此。
此外,于本发明的部分实施方案中,在步骤(c)之前,可进一步将一添加剂添加至中间产物水溶液中,以促进中间产物水溶液的缩合反应及聚合凝胶化,从而缩短反应时间。所述添加剂包括但不限于催化剂、界面活性剂及螯合剂。于本发明的部分实施方案中,是添加选自以下群组的催化剂:双-2-乙基己基磺基琥珀酸钠、十二烷基苯磺酸钠及其组合。
1.1.2.制备高导热补强材料的步骤(d)至(e)
步骤(d)至(e)是用于通过使用预处理液对补强材料进行预处理以制备高导热补强材料。补强材料包括但不限于由选自下列群组的材料所制得的纸、布或毡:纸纤维、玻璃纤维、石英纤维、有机高分子纤维、碳纤维及前述的组合。有机高分子纤维的实例包括但不限于高模量聚丙烯(high-moduluspolypropylene,hmpp)纤维、聚酰胺纤维、超高分子量聚乙烯(ultra-highmolecularweightpolyethylene,uhmwpe)纤维及液晶聚合物(liquidcrystalpolymer,lcp)。于本发明的部分实施方案中,是使用玻璃纤维布作为补强材料,例如e级玻璃纤维布、ne级玻璃纤维布、q级玻璃纤维布、d级玻璃纤维布、s级玻璃纤维布、t级玻璃纤维布及l级玻璃纤维布,且所述玻璃纤维布可为织物或非织物。于后附实施例中,是使用e级玻璃纤维布作为补强材料。
于步骤(d)中,使补强材料含浸预处理液的方式并无特殊限制,例如可将补强材料以水平浸没或垂直浸没的方式放入预处理液中,且含浸的时间也无特殊限制,只要足够使补强材料全体均匀地覆有预处理液即可,例如可为1分钟至5分钟。
于步骤(e)中,烘干是指将经含浸的补强材料放入烘箱中在高温下烘烤一段时间以去除溶剂。合适的烘干时间可为1至20分钟,较佳为5至15分钟,更佳为5至10分钟。合适的烘干温度可为300℃至700℃,较佳为400℃至700℃,更佳为400℃至600℃,特别佳为450℃至550℃。
1.2.介电材料层
于本发明高导热半固化片中,介电材料层是一热固性树脂组合物的固化产物,其中该热固性树脂组合物包括热固性树脂、根据需要的硬化剂及根据需要的添加剂,进一步说明如下。
1.2.1.热固性树脂
本文中,热固性树脂是指在受热后可通过交联反应形成网状结构而逐渐固化的成分。热固性树脂可由单一种热固性树脂来提供,也可通过混合多种热固性树脂来提供。热固性树脂的实例包括但不限于环氧树脂以及具有反应性官能基的热固性酚醛树脂、热固性苯并恶嗪树脂(benzoxazineresin,以下简称“bz树脂”)、热固性聚苯醚树脂等。各热固性树脂可单独使用或任意组合使用。本文中,反应性官能基是指任何可供反应固化的官能基,其实例包括但不限于羟基、羧基、烯基及胺基。于本发明部分实施方案中,是使用环氧树脂及具有反应性官能基的热固性聚苯醚树脂。
本文中,环氧树脂是指在一分子中具有至少两个环氧官能基的热固性树脂,例如双官能基环氧树脂、四官能基环氧树脂、八官能基环氧树脂或更多官能基的环氧树脂。环氧树脂的种类并无特殊限制,本发明所属技术领域中普通技术人员于观得本申请说明书后可根据需要选用。举例言之,可使用含溴环氧树脂,以赋予热固性树脂组合物较佳的阻燃性质,也可使用不含卤素(如溴)的环氧树脂,以因应无卤的环保需求。
可用于本发明的环氧树脂包括但不限于二环戊二烯(dicyclopentadiene,dcpd)型环氧树脂、双酚型环氧树脂、酚醛型环氧树脂、二苯乙烯型环氧树脂、含三嗪(triazine)骨架的环氧树脂、含茀骨架的环氧树脂、三酚基甲烷型环氧树脂、伸茬基(xylylene)型环氧树脂、联苯型环氧树脂、联苯芳烷基型环氧树脂、萘型环氧树脂及脂环式环氧树脂。双酚型环氧树脂的实例包括但不限于双酚a型环氧树脂、双酚f型环氧树脂或双酚s型环氧树脂。酚醛型环氧树脂(例如线性酚醛环氧树脂)的实例包括但不限于苯酚酚醛型环氧树脂、甲酚酚醛型环氧树脂、双酚a酚醛型环氧树脂或双酚f酚醛型环氧树脂。环氧树脂的实例还可包括多官能酚类及蒽等多环芳香族类的二缩水甘油醚化合物。此外,环氧树脂中可导入磷化合物而形成含磷环氧树脂,其实例可例举经9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(9,10-dihydro-9-oxa-10-phosphahenanthrene-10-oxide,dopo)改质的环氧树脂。含溴环氧树脂的实例包括但不限于四溴双酚a型环氧树脂。
各环氧树脂可单独使用或任意组合使用,本发明所属技术领域中普通技术人员可依据实际需要而自行调配。于后附实施例中,是使用酚醛型环氧树脂。
本文中,具有反应性官能基的热固性聚苯醚树脂是指在分子主链中至少具有重复单元
商业上可购得的具有反应性官能基的热固性聚苯醚树脂的实例包括可购自三菱瓦斯化学(mitsubishigaschemical)的型号为ope-2st(含乙烯苄基的热固性聚苯醚树脂)的产品,可购自沙特基础工业(sabic)的型号为sa-9000(含甲基丙烯酸酯基的热固性聚苯醚树脂)及sa-90(含羟基的热固性聚苯醚树脂)的产品。于后附实施例中,是使用含甲基丙烯酸酯基的热固性聚苯醚树脂。
一般而言,以热固性树脂组合物的固含量计,热固性树脂的含量可为20重量%至85重量%,但不限于此,本发明所属技术领域中普通技术人员可依据实际需要而自行调整。
1.2.2.硬化剂(选用成分)
热固性树脂组合物可进一步添加硬化剂,以促进固化反应的进行。以热固性树脂组合物包括有环氧树脂为例,进一步添加硬化剂,可促进环氧官能基开环反应,并降低树脂组合物的固化反应温度。可用于本发明的硬化剂的种类并无特殊限制,只要其能促进固化反应的进行即可。
于热固性树脂组合物包括环氧树脂的情况中,合适的硬化剂包括但不限于含-oh基化合物、含胺基化合物、酸酐化合物、及活性酯化合物,且各硬化剂可单独使用或混合使用。上述硬化剂的实例包括但不限于酚醛树脂(phenolicresin,pn树脂)、苯乙烯-马来酸酐共聚物(styrenemaleicanhydridecopolymer,sma共聚物)、双马来酰亚胺(bismaleimide,bmi)、二氰二胺(dicyandiamide,dicy)、4,4'-二胺基二苯基砜(4,4'-diaminodipehynlsulfone,dds)、二(苯胺基)甲烷、芳香族二胺、芳香族二酸酐、脂肪族二酸酐、三嗪(triazine)、氰酸酯树脂(cyanateester,ce)、三氮杂苯酚醛树脂、bz树脂与其开环聚合物以及苯乙烯与乙烯基酚共聚物。于后附实施例中,是使用dicy。
于热固性树脂组合物包括聚苯醚树脂的情况中,硬化剂的实例可包括但不限于bmi、含丁二烯及/或苯乙烯的弹性体、含乙烯基及/或烯丙基的异氰脲酸酯及其组合。于后附实施例中,是使用含乙烯基及/或烯丙基的异氰脲酸酯。
一般而言,以热固性树脂组合物的固含量计,硬化剂的含量可为5重量%至25重量%,但不限于此,本发明所属技术领域中普通技术人员可依实际需求而调整。
1.2.3.添加剂(选用成分)
除热固性树脂与硬化剂之外,热固性树脂组合物可根据需要进一步包括其他添加剂,以适应性改良热固性树脂组合物在制造过程中的可加工性,或改良所制电子材料的物化性质。所述添加剂的实例包括但不限于下文所述的催化剂、阻燃剂、填料以及其他诸如分散剂、增韧剂等本发明所属技术领域中所惯用的添加剂。各添加剂可单独使用或根据需要任意组合使用。
[催化剂]
本文中,催化剂是指可促进交联反应的成分。常用的催化剂包括但不限于有机过氧化物、三级胺、四级铵、咪唑化合物及吡啶化合物。有机过氧化物的实例包括但不限于二苯甲酰过氧化物(benzoylperoxide,bpo)、过氧化二异丙苯(dicumylperoxide,dcp)及α,α'-双(三级丁基过氧)二异丙苯(α,α'-bis(t-butylperoxy)diisopropylbenzene)。三级胺的实例包括但不限于二甲苄胺、2-(二甲胺甲基)苯酚及2,4,6-三(二甲胺甲基)苯酚。咪唑化合物的实例包括但不限于2-甲基咪唑、2-乙基-4-甲基咪唑及2-苯基咪唑。吡啶化合物的实例包括但不限于2,3-二胺基吡啶、2,5-二胺基吡啶、2,6-二胺基吡啶、4-二甲基胺基吡啶、2-胺基-3-甲基吡啶、2-胺基-4-甲基吡啶及2-胺基-3-硝基吡啶。各催化剂可单独使用或任意组合使用。
当热固性树脂组合物包括有环氧树脂时,催化剂较佳是选自三级胺、四级铵、咪唑化合物或吡啶化合物。另外,当热固性树脂组合物包括有聚苯醚树脂时,催化剂较佳是选自有机过氧化物。于后附实施例中,是使用2-甲基咪唑或α,α'-双(三级丁基过氧)二异丙苯。一般而言,以热固性树脂组合物的固含量计,催化剂的含量可为0.01重量%至5重量%,但不限于此,本发明所属技术领域中普通技术人员可依实际需求而调整。
[阻燃剂]
阻燃剂可提升所制电子材料的难燃性。阻燃剂的类型包括但不限于含磷阻燃剂、含溴阻燃剂及含氮化合物,且各类型阻燃剂可单独使用或任意组合使用。含磷阻燃剂的实例包括但不限于磷酸酯类、磷腈类、聚磷酸铵类、次磷酸金属盐、磷酸三聚氰胺类及其组合。含溴阻燃剂的实例包括但不限于四溴双酚a(tetrabromobisphenola)、十溴二苯基氧化物(decabromodiphenyloxide)、十溴化二苯基乙烷(decabrominateddiphenylethane)、1,2-二(三溴苯基)乙烷(1,2-bis(tribromophenyl)ethane)、溴化环氧寡聚合物(brominatedepoxyoligomer)、八溴三甲基苯基茚(octabromotrimethylphenylindane)、二(2,3-二溴丙醚)(bis(2,3-dibromopropylether))、三(三溴苯基)三嗪(tris(tribromophenyl)triazine)、溴化脂肪烃(brominatedaliphatichydrocarbon)及溴化芳香烃(brominatedaromatichydrocarbon)。含氮化合物的实例包括但不限于三聚氰胺及其衍生物。商业上可购得的含磷阻燃剂的实例包括可购自巴斯夫(basf)的型号为melapur200的产品。
一般而言,以热固性树脂组合物的固含量计,阻燃剂的含量可为0重量%至30重量%,但本发明不限于此,本发明所属技术领域中普通技术人员可依实际需求而调整。
[填料]
热固性树脂组合物可进一步包括填料以改善所制得电子材料的机械强度、导热性及尺寸安定性。合适的填料的实例包括但不限于选自以下群组的填料:二氧化硅(包括中空二氧化硅)、氧化铝、氢氧化铝、氧化镁、氢氧化镁、碳酸钙、滑石、黏土、氮化铝、氮化硼、碳化铝硅、碳化硅、碳酸钠、二氧化钛、氧化锌、氧化锆、石英、钻石粉、类钻石粉、石墨、煅烧高岭土、白岭土、云母、水滑石、纳米碳管、聚四氟乙烯(polytetrafluoroethylene,ptfe)粉体、玻璃珠、中空玻璃珠、陶瓷晶须、纳米级无机粉体及前述的组合。
一般而言,以热固性树脂组合物的固含量计,填料的含量可为0重量%至40重量%,但本发明不限于此,本发明所属技术领域中普通技术人员可依实际需求而调整。
1.2.4.热固性树脂组合物的制备
关于热固性树脂组合物的制备,可通过将热固性树脂组合物各成分,包括热固性树脂、硬化剂及其他选用组分,以搅拌器均匀混合并溶解或分散于溶剂中而制成清漆状的形式,供后续加工利用。所述溶剂可为任何可溶解或分散热固性树脂组合物各成分、但不与该等成分反应的惰性溶剂。举例言之,可用以溶解或分散热固性树脂组合物各成分的溶剂包括但不限于:甲苯、γ-丁内酯、甲乙酮、环己酮、丁酮、丙酮、二甲苯、甲基异丁基酮、n,n-二甲基甲酰胺(n,n-dimethylformamide,dmf)、n,n-二甲基乙酰胺(n,n-dimethylacetamide,dmac)及n-甲基吡咯烷酮(n-methyl-pyrolidone,nmp)。各溶剂可单独使用或混合使用。溶剂的用量并无特殊限制,原则上只要能使热固性树脂组合物各组分均匀溶解或分散于其中即可。于后附实施例中,是使用甲乙酮作为溶剂。
2.高导热半固化片的制备方法
本发明另外提供一种制备高导热半固化片的方法,其包括以下步骤:
(a)提供一前驱物水溶液,该前驱物水溶液包括一选自以下群组的前驱物:有机盐类、无机盐类及其组合;
(b)使该前驱物水溶液进行水解反应,形成一中间产物水溶液;
(c)使该中间产物水溶液进行缩合聚合反应,形成一预处理液;
(d)使一补强材料含浸该预处理液;
(e)烘干该经含浸的补强材料,得到一高导热补强材料;以及
(f)于该高导热补强材料的表面形成一介电材料层,得到一高导热半固化片。
步骤(a)至(e)的相关说明,包括前驱物、水解反应、缩合聚合反应、预处理液、补强材料、介电材料层等相关说明如前所述,于此不另赘述。于步骤(f)中,于高导热补强材料的表面形成介电材料层是通过以下方式而进行:将高导热补强材料含浸、涂布或喷涂热固性树脂组合物,并干燥该经含浸、涂布或喷涂的高导热补强材料。所述涂布可通过任何惯用方式实现,例如但不限于辊式涂布、棒式涂布、凹版涂布、旋转涂布、狭缝涂布及铸模涂布。所述干燥可例如在150℃至180℃的温度下进行2至20分钟,借此形成半固化状态(b-stage)的高导热半固化片。于后附实施例中,干燥是在175℃下进行2至15分钟。
3.金属箔积层板及印刷电路板
本发明也提供一种由上述高导热半固化片制得的金属箔积层板,其包括一介电层及一金属层,其中该介电层是由前文所述的高导热半固化片提供。具体而言,本发明的金属箔积层板可通过以下方式制备:层叠多层的前述高导热半固化片,接着于经层叠的高导热半固化片所构成的介电层的至少一外侧表面层叠一金属箔(如铜箔)以提供一包括介电层及金属层的层叠物,对该层叠物进行热压操作而得到金属箔积层板。热压操作的条件可如下所述:在180℃至220℃的温度下及5千克/平方厘米(kg/cm2)至15千克/平方厘米的压力下,进行60至200分钟的热压。
上述金属箔积层板可通过进一步图案化其外侧的金属箔,而形成印刷电路板。
4.实施例
4.1.测量方式说明
现以下列具体实施方案进一步例示说明本发明,其中,所采用的测量仪器及方法分别如下:
[抗撕强度测试]
抗撕强度是指金属箔对经层合的半固化片的附着力而言,本测试中是以1/8英寸宽度的铜箔自板面上垂直撕起,以其所需力量的大小来表达附着力的强弱。抗撕强度的单位为磅/英寸(pound/inch(lb/in))。
[玻璃转移温度(tg)测试]
利用动态机械分析仪(differentialscanningcalorimeter,dsc)来测量金属箔积层板的玻璃转移温度(tg)。tg的测试规范为电子电路互联与封装学会(theinstituteforinterconnectingandpackagingelectroniccircuits,ipc)的ipc-tm-650.2.4.24c及25c号检测方法。
[导热系数测试]
根据astmd5470规范,测量金属箔积层板的导热系数。导热系数的单位为瓦特/米·克耳文(w/m·k)。
[介电常数(dk)测试]
根据ipc-tm-6502.5.5.13规范,在工作频率10ghz下,测量高导热半固化片(树脂含量(resincontent,rc)为53%)的介电常数(dk)。
[钻针磨耗测试]
以直径0.3毫米的钻针对金属箔积层板钻孔,并于钻孔次数达2000次之后观察钻针头部的磨耗。由于钻针的切削边缘(cuttingedge,ce)在钻孔过程中会不断与积层板接触磨耗,在切削边缘ce的切削转角(cuttingcorner,cc)处会产生磨耗,因此本测试中是针对切削转角cc处进行测量以得到磨耗率。
[掉粉测试]
以切割工具切割高导热半固化片,并以肉眼观察是否有掉粉的情形。若无掉粉情形则纪录为“n”,若有掉粉情形则记录为“y”。
4.2.预处理液的制备
[预处理液a]
将18.7565克的九水合硝酸铝(aluminumnitratenonahydrate,aln,购自默克(merck))溶于100毫升的99%的纯水中以制得0.5m硝酸铝水溶液。随后,将10.212克的异丙醇铝(aluminumisopropoxide,alp,购自默克)粉末慢慢地加入0.5m硝酸铝水溶液中,以使得异丙醇铝对九水合硝酸铝的莫耳比为1:1。将所得的水溶液搅拌48小时以进行水解反应。之后,加入1克的双-2-乙基己基磺基琥珀酸钠(购自默克)或十二烷基苯磺酸钠(购自默克)并使其混合反应1小时,加热至60℃,观察混合物直至其变为透明凝胶状,再加热至90℃反应8小时,由此制得预处理液a。
[预处理液b]
以与制备预处理液a相同的方式来制备预处理液b,但是异丙醇铝对九水合硝酸铝的莫耳比调整为3:1。
[预处理液c]
以与制备预处理液a相同的方式来制备预处理液c,但是异丙醇铝对九水合硝酸铝的莫耳比调整为4:1。
[预处理液d]
以与制备预处理液a相同的方式来制备预处理液d,但是异丙醇铝对九水合硝酸铝的莫耳比调整为5:1。
[预处理液e]
将53.2075克的四水合醋酸镁(magnesiumacetatetetrahydrate,mat,购自默克)溶于150毫升的乙醇中并搅拌均匀,随后加入150毫升的1m草酸(oxalicacid,oa,购自默克),持续搅拌直至白色胶体出现,由此制得预处理液e。
[预处理液f]
将59.498克的六水合硝酸锌(zincnitratehexahydrate,znh,购自默克)溶于150毫升的蒸馏水中,在室温下搅拌均匀后加热至90℃使其反应1小时,随后将硝酸锌水溶液加入至10毫升的乙二醇(购自第一化工)中并搅拌2小时,由此制得预处理液f。
[预处理液g]
以非溶胶-凝胶法制备预处理液g,其中将20克的氧化铝粉末(购自住友化学(sumitomochemical))、0.2克的硅烷偶合剂(型号:kbm-903,购自信越化学)与100毫升的甲醇水溶液(甲醇:水=1:1)混合均匀,搅拌90分钟,由此制得预处理液g。
4.3.高导热补强材料的制备
依表1所示的处理条件制得实施例1至22及比较例5的高导热补强材料。所使用的e级玻璃纤维布的型号为tgfc2116,厚度为90微米。
表1:高导热补强材料的处理条件
4.4.热固性树脂组合物的制备
依表2所示的比例配制实施例1至22的热固性树脂组合物,其中是将各成分于室温下使用搅拌器混合,并加入甲乙酮(购自川庆化学(transchiefchemical))作为溶剂,接着将所得混合物于室温下搅拌60至120分钟后,制得各热固性树脂组合物。
依表3所示的比例配制比较例1至5的热固性树脂组合物,其中是将各成分于室温下使用搅拌器混合,并加入甲乙酮作为溶剂,接着将所得混合物于室温下搅拌60至120分钟后,制得各热固性树脂组合物。
表2及表3所涉各成分的原物料资讯如表4所列。
表2:实施例的热固性树脂组合物的组成
表3:比较例的热固性树脂组合物的组成
表4:热固性树脂组合物的原物料资讯列表
4.5.高导热半固化片及金属箔积层板的制备及性质测量
分别使用实施例1至22的高导热补强材料及热固性树脂组合物来制备高导热半固化片及金属箔积层板。首先,通过辊式涂布机,将实施例1至22的高导热补强材料分别含浸于实施例1至22的热固性树脂组合物中,并控制高导热补强材料的厚度至合适程度。接着,将含浸后的高导热补强材料置于175℃的烘箱中加热干燥2至15分钟,借此制得半固化状态(b阶段)的实施例1至22的高导热半固化片(高导热半固化片的树脂含量为53%)。之后,将四片高导热半固化片层合,并在其两侧的最外层各层合一张0.5盎司的铜箔(高温延伸性(hightemperatureelongation,hte)铜箔),随后置于热压机中进行高温热压固化以制得实施例1至22的金属箔积层板。热压条件为:以3.0℃/分钟的升温速度升温至200℃至220℃,并在该温度下,以全压15千克/平方厘米(初压8千克/平方厘米)的压力热压180分钟。
分别使用比较例1至4的热固性树脂组合物来制备半固化片及金属箔积层板。首先,通过辊式涂布机,将未经预处理的玻璃纤维布(型号:tgfc2116,厚度:90微米)分别含浸渍于比较例1至4的热固性树脂组合物中,并控制玻璃纤维布的厚度至合适程度。接着,将含浸后的玻璃纤维布置于175℃的干燥机中加热干燥2至15分钟,借此制得半固化状态(b阶段)的比较例1至4的半固化片(半固化片的树脂含量为53%)。之后,将四片半固化片层合,并在其两侧的最外层各层合一张0.5盎司的hte铜箔,随后置于热压机中进行高温热压固化以制得比较例1至4的金属箔积层板。热压条件为:以3.0℃/分钟的升温速度升温至200℃至220℃,并在该温度下,以全压15千克/平方厘米(初压8千克/平方厘米)的压力热压180分钟。
使用比较例5的高导热补强材料及热固性树脂组合物来制备高导热半固化片及金属箔积层板。首先,通过辊式涂布机,将比较例5的高导热补强材料含浸于比较例5的热固性树脂组合物中,并控制高导热补强材料的厚度至合适程度。接着,将含浸后的高导热补强材料置于175℃的烘箱中加热干燥2至15分钟,借此制得半固化状态(b阶段)的比较例5的高导热半固化片(高导热半固化片的树脂含量为53%)。之后,将四片高导热半固化片层合,并在其两侧的最外层各层合一张0.5盎司的hte铜箔,随后置于热压机中进行高温热压固化以制得比较例5的金属箔积层板。热压条件为:以3.0℃/分钟的升温速度升温至200℃至220℃,并在该温度下,以全压15千克/平方厘米(初压8千克/平方厘米)的压力热压180分钟。
依照前文所记载的测量方法测量实施例1至22及比较例1至5的半固化片与金属箔积层板的各项性质,包括tg、抗撕强度、导热系数、dk、钻针磨耗测试及掉粉测试,并将结果纪录于表5及表6中。
表5:实施例的半固化片与金属箔积层板的性质
表6:比较例的半固化片与金属箔积层板的性质
如表5所示,采用本发明高导热半固化片所制得的电子材料在机械性质及介电性质(如dk、抗撕强度等)表现上均可达到令人满意的程度,且具有优异的导热性及耐钻针磨耗性,在加工过程中也不会有掉粉的情形。如实施例2、3、4、6、7所示,在其他条件固定的情况下,于预处理液的烘干温度在400℃至600℃的情况下,所制得电子材料的抗撕强度、导热性、tg及耐钻针磨耗性较佳。又如实施例3、13、18、20、22及10、14、16、19、21所示,在其他条件固定的情况下,于预处理液的烘干时间在5至15分钟的情况下,所制得电子材料的导热性及耐钻针磨耗性可取得较佳的平衡。此外,如实施例3、11及12所示,在前驱物为所指定的盐类之下,均可制得含有高导热成分的预处理液,且所制得电子材料可具有高导热系数。
相对地,如表6所示,采用非本发明高导热半固化片所制得的电子材料无法同时具备优异的导热性及耐钻针磨耗性,且在加工过程中有掉粉的情形。具体言之,如比较例1及3所示,于未使用本发明的高导热半固化片且热固性树脂组合物不包括填料的情况下,所制得的电子材料的导热系数偏低,其中使用包括环氧树脂的热固性树脂组合物所制得的电子材料的导热系数仅有0.42瓦特/米·克耳文,而使用包括聚苯醚树脂的热固性树脂组合物所制得的电子材料的导热系数更仅有0.39瓦特/米·克耳文。又如比较例2及4所示,于未使用本发明的高导热半固化片,但热固性树脂组合物包括有填料的情况下,所制得电子材料虽可具有较高的导热系数,但在加工过程中出现掉粉情形,且钻针磨耗率高(即,耐钻针磨耗性差)。此外,如比较例5所示,在使用非本发明所指定的溶胶-凝胶法所制备的传统高导热半固化片的情况下,所制得的电子材料的导热系数仍显著低于采用本发明高导热半固化片所制得的电子材料的导热系数,此显示本发明所指定的溶胶-凝胶法赋予本发明高导热半固化片有别于依其他方法所制得的高导热半固化片的特性。
上述实施例仅为例示性说明本发明的原理及其功效,并阐述本发明的技术特征,而非用于限制本发明的保护范畴。任何本领域技术人员在不违背本发明的技术原理及精神下,可轻易完成的改变或安排,均属本发明所要求保护的范围。因此,本发明的权利保护范围如权利要求书所列。
1.一种高导热半固化片,其包括一高导热补强材料及一形成于该高导热补强材料表面的介电材料层,其特征在于,该高导热补强材料是通过包括以下步骤的方法所制得:
(a)提供一前驱物水溶液,该前驱物水溶液包括一选自以下群组的前驱物:有机盐类、无机盐类及其组合;
(b)使该前驱物水溶液进行水解反应,形成一中间产物水溶液;
(c)使该中间产物水溶液进行缩合聚合反应,形成一预处理液;
(d)使一补强材料含浸该预处理液;以及
(e)烘干该经含浸的补强材料,得到该高导热补强材料。
2.如权利要求1所述的高导热半固化片,其特征在于,该有机盐类是选自以下群组:甲醇铝、乙醇铝、异丙醇铝、丁醇铝、醋酸锌及醋酸镁。
3.如权利要求1所述的高导热半固化片,其特征在于,该无机盐类为硝酸锌或硝酸铝。
4.如权利要求1所述的高导热半固化片,其特征在于,该前驱物为有机盐类与无机盐类的组合,且有机盐类的莫耳数对无机盐类的莫耳数的比例为1:1至5:1。
5.如权利要求1所述的高导热半固化片,其特征在于,该方法还包括于步骤(c)前,于该中间产物水溶液中添加一选自以下群组的添加剂:双-2-乙基己基磺基琥珀酸钠、十二烷基苯磺酸钠及其组合。
6.如权利要求1所述的高导热半固化片,其特征在于,步骤(c)的缩合聚合反应是于20°c至90°c下进行。
7.如权利要求1所述的高导热半固化片,其特征在于,步骤(e)的烘干是于300°c至700°c下进行1至20分钟。
8.如权利要求1所述的高导热半固化片,其特征在于,该补强材料为玻璃纤维布。
9.如权利要求1所述的高导热半固化片,其特征在于,该介电材料层是一热固性树脂组合物的固化产物,其中该热固性树脂组合物包括一热固性树脂及一根据需要的硬化剂。
10.如权利要求9所述的高导热半固化片,其特征在于,该热固性树脂组合物还包括选自以下群组的至少一种:催化剂、阻燃剂、填料、分散剂及增韧剂。
11.一种金属箔积层板,其特征在于,其是通过将如权利要求1至10所述的高导热半固化片与金属箔加以层合而制得。
12.一种印刷电路板,其特征在于,其是由如权利要求11所述的金属箔积层板所制得。
13.一种制备高导热半固化片的方法,其特征在于,其包括:
(a)提供一前驱物水溶液,该前驱物水溶液包括一选自以下群组的前驱物:有机盐类、无机盐类及其组合;
(b)使该前驱物水溶液进行水解反应,形成一中间产物水溶液;
(c)使该中间产物水溶液进行缩合聚合反应,形成一预处理液;
(d)使一补强材料含浸该预处理液;
(e)烘干该经含浸的补强材料,得到一高导热补强材料;以及
(f)于该高导热补强材料的表面形成一介电材料层,得到一高导热半固化片。
14.如权利要求13所述的方法,其特征在于,该有机盐类是选自以下群组:甲醇铝、乙醇铝、异丙醇铝、丁醇铝、醋酸锌及醋酸镁。
15.如权利要求13所述的方法,其特征在于,该无机盐类为硝酸锌或硝酸铝。
16.如权利要求13所述的方法,其特征在于,该前驱物为有机盐类与无机盐类的组合,且有机盐类的莫耳数对无机盐类的莫耳数的比例为1:1至5:1。
17.如权利要求13所述的方法,其特征在于,还包括于步骤(c)前,于该中间产物水溶液中添加一选自以下群组的添加剂:双-2-乙基己基磺基琥珀酸钠、十二烷基苯磺酸钠及其组合。
18.如权利要求13所述的方法,其特征在于,步骤(c)的缩合聚合反应是于20°c至90°c下进行。
19.如权利要求13所述的方法,其特征在于,步骤(e)的烘干是在300°c至700°c下进行1至20分钟。
20.如权利要求13所述的方法,其特征在于,该补强材料为玻璃纤维布。
技术总结