本发明涉及轨道交通技术领域,具体涉及一种高效刚性接触线结构光光条提取方法。
背景技术:
接触网主要由接触悬挂、支持装置、定位装置、支柱及相关基础设施等构成,是沿铁路线上空架设的一种特殊输电线路。它的功能是通过接触线与受电弓之间的接触,从而为电力机车提供电能。因此,要保证机车行车安全,保证受电弓与接触线良好接触以及稳定受流,除了对接触悬挂的设计施工和运营需要严格要求之外,对接触网各个设施设备进行状态检测也必不可少。
评价接触网受流性能的重要参数包括几何参数,而几何参数则主要包括几项测量指标:接触线高度、接触线拉出值、定位管坡度、线岔、接触线磨耗和支柱位置等。基于激光扫描方法(也称为结构光式)实现的几何参数测量,主要通过在列车车顶安装高速工业数字相机,具备一定倾斜角度的朝上拍摄采集激光光条在接触网导线区域的成像图像,然后通过采用图像视觉处理的方法定位接触网导线在图像中的位置,从而计算导线相对于相机的高度与横向位移,最后根据相机安装车顶的位置关系,实现接触网几何参数的导高与拉出值测量。图像检测定位接触网导线位置主要通过采用基础图像处理方法,对相机采集图像进行分析,实现对接触网导线位置的定位计算,而定位接触网导线位置处理过程中,最重要的就是导线光条成像的提取。由于成像环境干扰多和导线光条图像复杂等因素,传统的图像处理方法对于刚性接触线结构光光条的提取效率与提取精度有待提高。
技术实现要素:
为了克服上述现有技术的缺陷和不足,本发明的目的旨在于提供一种能够快速、精准的提取接触网导线光条,并最终实现接触网几何参数精准测量的高效刚性接触网线结构光光条的提取方法。
本发明的目的是通过以下技术方案实现的:
一种高效刚性接触线结构光光条提取方法,包括以下步骤:
图像阈值化步骤:利用图像灰度直方图的分布特性,设定一个合理的阈值,对图像进行阈值化处理;
连通区域提取步骤:采用基于8邻域的连通区域提取方法,对阈值化结果图像进行区域提取,将具备连通性的各个前景目标进行组合,形成具备形状与位置特征的不同区域目标;
blob几何分析步骤:对各个连通区域的位置分布和尺寸几何关系进行特性分析,对较小的区域或者较大的区域进行相应的滤除工作以及将分布相对密集的多个单连通区域组合合并形成一个大的连通区域,从而计算生成有效的导线连通区域候选集合;
形状判别分析步骤:采用hausdorffdistance判别来进行几何形状的识别,并最终得到刚性接触线轮廓;
导线轮廓定位输出步骤:输出刚性接触线导线轮廓,从而实现接触网几何参数的在线实时监测。
优选地,所述图像阈值化步骤具体包括以下步骤:
a1.基于检测图像的成像特性,初始化算法参数:前景最小占比因子fmin、前景最大占比因子fmax、阈值gthresh和迭代阈值步长gstep;
a2.根据参数gthresh进行阈值化,并计算前景占比f;
a3.根据阈值化后的前景占比f与fmin和fmax之间的关系,判别阈值化是否合理;若阈值化合理,则阈值化结束;若不合理,则进行下一步处理;
a4.调整阈值参数gthresh,若前景占比f与fmin的差距较大,则进行较大步长调整gthresh =gstep;否则进行微小步长调整gthresh =1;
a5.重新执行上述步骤a2~a4,直到在步骤a3中得到合理的结果,跳出迭代计算,从而完成图像的阈值化处理。
优选地,所述步骤a4中,若f<0.5fmin,表示前景占比f与fmin的差距较大。
优选地,所述blob几何分析步骤具体包括以下步骤:
b1.根据导线优先分布在图像最底部的成像特性,首先计算最低区域rref;
b2.在rref的最低点位置,根据导线的标准宽度wref和高度href,生成一个标准区域r'ref;
b3.判别连通区域与r'ref之间的关系,若连通区域与r'ref在水平方向和垂直方向都存在交集,则进行rref的融合扩大,否则该区域无效;
b4.经融合处理后,得到一个实际的完整导线区域,对得到的完整导线区域再次进行前景计算。
优选地,所述形状判别分析步骤的具体方法为:
假设有两组集合a={a1,a2,...,ap}和b={b1,b2,...,bp},则这两个点集合之间的hausdorff距离定义为:
h(a,b)=max(h(a,b),h(b,a)(1)
点集a为标准刚性接触线图像模板,点集b为blob几何分析后提取的目标区域图像,h(a,b)和h(b,a)分别称为从a集合到b集合以及从b集合到a集合的单向hausdorff距离,双向hausdorff距离h(a,b)是单向距离h(a,b)和h(b,a)两者中的较大者,它度量了两个点集间的最大不匹配程度;
采用第一最大不匹配度和第二最大不匹配度对提取的目标区域图形进行形状判别,并最终得到刚性接触线轮廓。
优选地,所述第二最大不匹配度不大于所述第一最大不匹配度的2倍。
本技术方案的有益效果如下:
经过大量数据试验统计结果表明,本申请方法能够准确、快速的完成导线光条的定位提取工作,满足接触网几何参数在线实时监测的基本要求。
本申请的快速图像阈值化方法基于迭代判别法,结合城市轨道线路成像环境特性以及基于激光扫描式图像成像基本原理,本申请所要处理的图像中,目标前景所占比例较少,而背景则占图像绝大部分区域(导线光条为目标前景,而较暗的黑色区域则为图像背景)。为了提高处理效率,参考了以上的图像特性,从而提出了快速的图像阈值化方法。该快速图像阈值化方法不是一种简单的全局性阈值化方法,也不是一种基于邻域性质的阈值化方法,而是一种结合灰度直方图基本思想的迭代判别阈值处理方法,显著提高了前景图像提取的处理效率。
本申请引入轻量级的几何形状识别,以便更准确的提取导线,去除噪声干扰。考虑设备软件要求的实时性较高,因此抛弃了复杂度较高的特征点提取、匹配等算法,采用了hausdorffdistance判别来进行几何形状的识别。
本申请采用采用了8邻域的连通区域提取,降低了4邻域在锯齿效应明显的图像上提取连通区域的缺陷。
附图说明
本发明的前述和下文具体描述在结合以下附图阅读时变得更清楚,附图中:
图1是本发明的高效刚性接触线结构光光条提取方法流程图;
图2是本发明的图像阈值化结果图;
图3是本发明的导线连通区域提取示意图;
图4是本发明的连通区域融合图。
具体实施方式
下面通过几个具体的实施例来进一步说明实现本发明目的技术方案,需要说明的是,本发明要求保护的技术方案包括但不限于以下实施例。
实施例1
如图1所示,本实施例公开了一种高效刚性接触线结构光光条提取方法,包括图像阈值化步骤、连通区域提取步骤、blob几何分析步骤、形状判别分析步骤和导线轮廓定位输出步骤;
图像阈值化步骤:由于刚性接触网主要安装于城市轨道线路的隧道环境中,同时基于激光扫描式的几何参数检测测量主要应用于夜间检测。因此,相机采集的该类图像基本上表现为单一的背景较暗,且目标导线较亮的情况,同时可能也会有部分接触网悬挂设备组件成像其中而形成干扰项。并且,本申请所要处理的图像中目标前景所占比例较少,而背景则占图像绝大部分区域(导线光条为目标前景,而较暗的黑色区域则为图像背景)。所以,本申请利用图像灰度直方图的分布特性,首先设定一个合理的阈值,采取二值化的方法对采集的图像进行二值分割,根据阈值来判断图像中的每个像素点是属于目标区域还是背景区域,并最终得到相应的二值图像,如图2所示;
连通区域提取步骤:经过对相机采集图像的阈值化处理后,接触网导线前景完成与隧道背景的区分。但是,由于数字相机采集的图像属于点阵式离散矩阵数据,导线前景在图像中表现为各个不同的离散数据点,所以需要进一步对阈值化结果图像进行区域提取。而在数字图像处理分析中,邻域分为4邻域和8邻域两种,为了降低4邻域在锯齿效应明显的图像上提取连通区域的缺陷,本申请采用基于8邻域的连通区域提取方法,对阈值化结果图像进行区域提取,将具备连通性的各个前景目标进行组合,形成具备形状与位置特征的不同区域目标,如图3所示;
blob几何分析步骤:经过邻域连通区域提取后,导线光条的连通区域仍然可能存在断裂,不具备连通性的情况。主要原因是相机安装位置相对车顶固定,而在相机成像视野范围内,列车前进方向的垂直方向(也就是拉出值方向),接触网导线会有一个来回运动的轨迹过程。当轨迹位移偏大时,导线与相机和激光视角偏大,从而成像光条就会在汇流排与导线夹角位置发生断裂,如果直接根据亮条的连通区域提取结果计算输出,那么将会造成检测误识别。除此之外,由于城轨线路上还存在其他接触网组件等设备,可能也会在相机成像的图像中。因此,本申请在连通区域提取结果的基础上,还将对连通区域结果进行blob几何分析,对连通区域的有效性进行判定和区域融合。blob几何分析主要是对各个连通区域的位置分布和尺寸等几何关系进行特性分析:由于城轨线路的接触网高度基本保持一致,因此导线在图像中成像轮廓的尺寸相对固定,所以结合导线轮廓的几何特性,对较小的区域或者较大的区域进行相应的滤除工作以及将分布相对密集的多个单连通区域组合合并形成一个大的连通区域,从而计算生成有效的导线连通区域候选集合;
形状判别分析步骤:基于结构光成像的刚性接触网图像中,导线将会在拉出值方向(也就是垂直于列车前进方向)上进行来回运动,当导线出现在拉出值较大位置时将会造成成像形状轮廓断裂,并且成像图像中会存在其他的噪声干扰。所以,本申请引入轻量级的几何形状识别,以便更准确的提取导线,去除噪声干扰。考虑设备软件要求的实时性较高,抛弃了复杂度较高的特征点提取、匹配等算法来进行形状识别,提高了识别方法的实时性。具体的,采用了hausdorffdistance(豪斯多夫距离)判别来进行几何形状的识别,并最终得到刚性接触线轮廓;
导线轮廓定位输出步骤:输出刚性接触线导线轮廓,从而实现接触网几何参数的在线实时监测。
优选地,所述采用hausdorffdistance(豪斯多夫距离)判别来进行几何形状的识别的主要原理如下:
假设有两组集合a={a1,a2,...,ap}和b={b1,b2,...,bp},则这两个点集合之间的hausdorff距离定义为:
h(a,b)=max(h(a,b),h(b,a)(1)
||||是点集a和b点集间的距离范式(如l2或euclidean距离)。
这里,式(1)称为双向hausdorff距离,是hausdorff距离的最基本形式;式(2)中的h(a,b)和h(b,a)分别称为从a集合到b集合和从b集合到a集合的单向hausdorff距离。即h(a,b)实际上首先对点集a中的每个点ai到距离此点ai最近的b集合中点bj之间的距离||ai-bj||进行排序,然后取该距离中的最大值作为h(a,b)的值,h(b,a)同理可得。
由式(1)知,双向hausdorff距离h(a,b)是单向距离h(a,b)和h(b,a)两者中的较大者,它度量了两个点集间的最大不匹配程度。
在本实施例中,a为标准刚性接触线图像模板,b为blob几何分析后提取的目标区域图像,通过设定第一最大不匹配度对提取的目标区域图像进行形状判别。由于在城市轨道刚性接触网运行的特殊位置处存在2根导线,采集图像中会出现2个识别目标,因此,采用第一最大不匹配度和第二最大不匹配度对提取的目标区域图形进行形状判别。优选地,其所述第二最大不匹配度不大于所述第一最大不匹配度的2倍。通过hausdorffdistance判别得到最终的刚性接触线轮廓。
优选地,所述图像阈值化步骤具体包括以下步骤:
a1.基于检测图像的成像特性,初始化算法参数:前景最小占比因子fmin、前景最大占比因子fmax、阈值gthresh和迭代阈值步长gstep;
a2.根据参数gthresh进行阈值化,并计算前景占比f;
a3.根据阈值化后的前景占比f与fmin和fmax之间的关系,判别阈值化是否合理。若阈值化合理,则阈值化结束;若不合理,则进行下一步处理;
a4.调整阈值参数gthresh,若前景占比f与fmin的差距较大,则进行较大步长调整gthresh =gstep;否则进行微小步长调整gthresh =1;
a5.重新执行上述步骤a2~a4,直到在步骤a3中得到合理的结果,跳出迭代计算,从而完成图像的阈值化处理。
优选地,所述前景占比f为大于阈值的像素点个数与图像总像素点之比。
优选地,所述步骤a3中,若fmin<f<fmax,则表示阈值化合理,否则为不合理。
优选地,所述步骤a4中,若f<0.5fmin,表示前景占比f与fmin的差距较大。
优选地,所述快速图像阈值化算法伪码如下:
优选地,如图4所示,所述blob几何分析步骤具体包括以下步骤:
b1.根据导线优先分布在图像最底部的成像特性,首先计算最低区域rref;
b2.在rref的最低点位置(x=xcenter,y=ybottom),根据导线的标准宽度wref和高度href,生成一个标准区域r'ref;
b3.判别连通区域与r'ref之间的关系,若连通区域与r'ref在水平方向和垂直方向都存在交集,则进行rref的融合扩大,否则该区域无效;
b4.经过融合处理后将会得到一个实际的完整导线区域,但是由于区域融合的主要原因在于前期的目标前景提取出现误差,从而导致了导线光条区域的断裂等现象。因此,在得到了实际的完整导线区域后,再次对该区域进行前景计算,以便于后续处理步骤能够准确计算导线的真实位置。
优选地,所述步骤b4中,再次对该区域进行前景计算是指再次对原始图像的该区域进行前景计算。之前直到blob几何分析之后就是为了获得实际的导线区域,在根据这个实际的导线区域从原始图像提取准确地目标前景,从而进入后续的形状判别分析步骤。
本实施例分别从西安地铁3号线、广州9号线收集试验数据近6万组,用于本申请方法的测试验证,测试数据图像分辨率2048*1000,数据主要由包含接触网几何参数检测功能的综合检测车在标准车速55km/h的条件下进行采集获得,实验统计结果如表1所示。
表1试验数据实验结果统计
从表1中,可以看出,本申请提出的结构光光条提取方法,在满足接触网导线定位准确率的同时,整体耗时也极低,能够满足实时在线检测的基本需求。
1.一种高效刚性接触线结构光光条提取方法,其特征在于:包括以下步骤:
图像阈值化步骤:利用图像灰度直方图的分布特性,设定一个合理的阈值,对图像进行阈值化处理;
连通区域提取步骤:采用基于8邻域的连通区域提取方法,对阈值化结果图像进行区域提取,将具备连通性的各个前景目标进行组合,形成具备形状与位置特征的不同区域目标;
blob几何分析步骤:对各个连通区域的位置分布和尺寸几何关系进行特性分析,对较小的区域或者较大的区域进行相应的滤除工作以及将分布相对密集的多个单连通区域组合合并形成一个大的连通区域,从而计算生成有效的导线连通区域候选集合;
形状判别分析步骤:采用hausdorffdistance判别来进行几何形状的识别,并最终得到刚性接触线轮廓;
导线轮廓定位输出步骤:输出刚性接触线导线轮廓,从而实现接触网几何参数的在线实时监测。
2.根据权利要求1所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述图像阈值化步骤具体包括以下步骤:
a1.基于检测图像的成像特性,初始化算法参数:前景最小占比因子fmin、前景最大占比因子fmax、阈值gthresh和迭代阈值步长gstep;
a2.根据参数gthresh进行阈值化,并计算前景占比f;
a3.根据阈值化后的前景占比f与fmin和fmax之间的关系,判别阈值化是否合理;若阈值化合理,则阈值化结束;若不合理,则进行下一步处理;
a4.调整阈值参数gthresh,若前景占比f与fmin的差距较大,则进行较大步长调整gthresh =gstep;否则进行微小步长调整gthresh =1;
a5.重新执行上述步骤a2~a4,直到在步骤a3中得到合理的结果,跳出迭代计算,从而完成图像的阈值化处理。
3.根据权利要求2所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述步骤a4中,若f<0.5fmin,表示前景占比f与fmin的差距较大。
4.根据权利要求1所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述blob几何分析步骤具体包括以下步骤:
b1.根据导线优先分布在图像最底部的成像特性,首先计算最低区域rref;
b2.在rref的最低点位置,根据导线的标准宽度wref和高度href,生成一个标准区域r'ref;
b3.判别连通区域与r'ref之间的关系,若连通区域与r'ref在水平方向和垂直方向都存在交集,则进行rref的融合扩大,否则该区域无效;
b4.经融合处理后,得到一个实际的完整导线区域,对得到的完整导线区域再次进行前景计算。
5.根据权利要求1所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述形状判别分析步骤的具体方法为:
假设有两组集合a={a1,a2,...,ap}和b={b1,b2,...,bp},则这两个点集合之间的hausdorff距离定义为:
h(a,b)=max(h(a,b),h(b,a)(1)
点集a为标准刚性接触线图像模板,点集b为blob几何分析后提取的目标区域图像,h(a,b)和h(b,a)分别称为从a集合到b集合以及从b集合到a集合的单向hausdorff距离,双向hausdorff距离h(a,b)是单向距离h(a,b)和h(b,a)两者中的较大者,它度量了两个点集间的最大不匹配程度;
采用第一最大不匹配度和第二最大不匹配度对提取的目标区域图形进行形状判别,并最终得到刚性接触线轮廓。
6.根据权利要求5所述的一种高效刚性接触线结构光光条提取方法,其特征在于:所述第二最大不匹配度不大于所述第一最大不匹配度的2倍。
技术总结