本发明涉及一种图像处理技术领域,具体是一种基于深度迁移学习的胃部低质量mri图像分割方法。
背景技术:
传统的医学图像分割方法主要基于图像和基于模型分割方法,基于图像的分割方法利用了图像本身的信息,如像素灰度、纹理和局部关系等,根据目标与其他区域在图像表现形式上的差别。基于模型的分割方法除了利用图像本身的信息,还利用了目标形状的先验信息,这些形状信息刻画了目标表面和内部特征的平滑属性,比单纯的基于图像的分割方法要准确。
但现有的分割方法存在一些缺点,基于图像的分割方法适合用于提取目标的结构,但单纯地基于图像信息来分割对图像的质量要求较高,通常对噪声、伪影和低对比度问题比较敏感。而基于模型的分割方法不受限于特定的目标形状,但对初始区域的选择比较敏感,可能陷入局部最优。
技术实现要素:
本发明的目的在于提供一种基于深度迁移学习的胃部低质量mri图像分割方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于深度迁移学习的胃部低质量mri图像分割方法,包括如下步骤:
1)获取患者图像:
2)根据患者图像获取患者数据集:
3)构造源域样本集:
4)构造目标域训练集和测试集:
5)训练源域高质量胃部mri图像深度神经网络模型:
6)训练目标域低质量胃部mri图像深度神经网络模型:
7)将胃部mri图像深度神经网络a的的参数迁移到胃部mri图像深度神经网络b中,形成基于迁移学习的低质量胃部mri图像深度神经网络c;
8)运用低质量胃部mri图像深度神经网络c,对低质量mri图像测试样本完成测试,得到低质量mri图像测试样本的分割结果及相关参数。
作为本发明进一步的方案:所述步骤1)包括:
从医院获取n×m幅高质量vibepre序列胃部磁共振图像,其中n=9表示患者个数,m≤120表示共计120副图像;获取a×b幅低质量胃部磁共振图像,其中a=3表示患者个数,b≤194表示共计194副图像;
作为本发明再进一步的方案:所述步骤2)包括:
a)获取低质量mri成像时使用的磁场强度为0.3t,成像层厚为3mm,所得图像大小为300×334;
b)获取高质量mri图像为不带增强的vibepre序列,所得图像大小为320×240;
作为本发明再进一步的方案:所述步骤3)包括:
高质量mri图像取120幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到480幅高质量mri源域样本集;
作为本发明再进一步的方案:所述步骤4)包括:
a)低质量mri图像取170幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到680幅低质量mri训练样本;标签也同样进行增广操作,附相同数量的训练样本标签;
b)低质量mri图像20幅为测试样本集,同时附相同数量的测试样本标签;
作为本发明再进一步的方案:所述步骤5)包括:
采用基于u-net深度神经网络模型,训练生成高质量胃部mri图像深度神经网络a;
作为本发明再进一步的方案:所述步骤6)包括:
采用基于u-net深度神经网络模型,训练生成低质量胃部mri图像深度神经网络b。
与现有技术相比,本发明的有益效果是:
本发明采用迁移学习的方法,对低质量胃部ct图像进行分割,结构表明,基于迁移学习的深度神经网络分割方法优于传统方法。能够帮助医生对胃部mri有更加直观的认识,提高临床诊断和治疗的准确性。
附图说明
图1为根据本发明的一个实施例的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
请参阅图1,本发明实施例中,一种基于深度迁移学习的胃部低质量mri图像分割方法,包括如下步骤:。
1)获取患者图像:
从医院获取n×m幅高质量vibepre序列胃部磁共振图像,其中n表示患者个数,m表示共计图像的数量;获取a×b幅低质量胃部磁共振图像,其中a表示患者个数,b表示共计图像的数量;
2)根据患者图像获取患者数据集:
a)获取低质量mri成像时使用的磁场强度、成像层厚、和所得图像大小;
b)获取高质量mri图像为不带增强的vibepre序列,获取所得图像大小;
3)构造源域样本集:
高质量mri图像取x幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到4x幅高质量mri源域样本集;
4)构造目标域训练集和测试集:
a)低质量mri图像取y幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到4y幅低质量mri训练样本;标签也同样进行增广操作,附相同数量的训练样本标签;
b)低质量mri图像z幅为测试样本集,同时附相同数量的测试样本标签;
5)训练源域高质量胃部mri图像深度神经网络模型:
采用基于u-net深度神经网络模型,训练生成高质量胃部mri图像深度神经网络a;
6)训练目标域低质量胃部mri图像深度神经网络模型:
采用基于u-net深度神经网络模型,训练生成低质量胃部mri图像深度神经网络b;
7)将胃部mri图像深度神经网络a的的参数迁移到胃部mri图像深度神经网络b中,形成基于迁移学习的低质量胃部mri图像深度神经网络c;
8)运用低质量胃部mri图像深度神经网络c,对低质量mri图像测试样本完成测试,得到低质量mri图像测试样本的分割结果及相关参数。
实施例2:
1)获取患者图像:
从医院获取n×m幅高质量vibepre序列胃部磁共振图像,其中n=9表示患者个数,m≤120表示共计120副图像;获取a×b幅低质量胃部磁共振图像,其中a=3表示患者个数,b≤194表示共计194副图像;
2)根据患者图像获取患者数据集:
a)获取低质量mri成像时使用的磁场强度为0.3t,成像层厚为3mm,所得图像大小为300×334;
b)获取高质量mri图像为不带增强的vibepre序列,所得图像大小为320×240;
3)构造源域样本集:
高质量mri图像取120幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到480幅高质量mri源域样本集;
4)构造目标域训练集和测试集:
a)低质量mri图像取170幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到680幅低质量mri训练样本;标签也同样进行增广操作,附相同数量的训练样本标签;
b)低质量mri图像20幅为测试样本集,同时附相同数量的测试样本标签;
5)训练源域高质量胃部mri图像深度神经网络模型:
采用基于u-net深度神经网络模型,训练生成高质量胃部mri图像深度神经网络a;
6)训练目标域低质量胃部mri图像深度神经网络模型:
采用基于u-net深度神经网络模型,训练生成低质量胃部mri图像深度神经网络b;
7)将胃部mri图像深度神经网络a的的参数迁移到胃部mri图像深度神经网络b中,形成基于迁移学习的低质量胃部mri图像深度神经网络c;
8)运用低质量胃部mri图像深度神经网络c,对低质量mri图像测试样本完成测试,得到低质量mri图像测试样本的分割结果及相关参数。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
1.一种基于深度迁移学习的胃部低质量mri图像分割方法,其特征在于,包括如下步骤:
1)获取患者图像:
2)根据患者图像获取患者数据集:
3)构造源域样本集:
4)构造目标域训练集和测试集:
5)训练源域高质量胃部mri图像深度神经网络模型:
6)训练目标域低质量胃部mri图像深度神经网络模型:
7)将胃部mri图像深度神经网络a的的参数迁移到胃部mri图像深度神经网络b中,形成基于迁移学习的低质量胃部mri图像深度神经网络c;
8)运用低质量胃部mri图像深度神经网络c,对低质量mri图像测试样本完成测试,得到低质量mri图像测试样本的分割结果及相关参数。
2.根据权利要求1所述的基于迁移学习的深度神经网络胃部mri图像分割方法,其特征在于,所述步骤1)包括:
从医院获取n×m幅高质量vibepre序列胃部磁共振图像,其中n表示患者个数,m表示共计图像的数量;获取a×b幅低质量胃部磁共振图像,其中a表示患者个数,b表示共计图像的数量。
3.根据权利要求1所述的基于迁移学习的深度神经网络胃部mri图像分割方法,其特征在于,所述步骤2)包括:
a)获取低质量mri成像时使用的磁场强度、成像层厚、和所得图像大小;
b)获取高质量mri图像为不带增强的vibepre序列,获取所得图像大小。
4.根据权利要求1所述的基于迁移学习的深度神经网络胃部mri图像分割方法,其特征在于,所述步骤3)包括:
高质量mri图像取x幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到4x幅高质量mri源域样本集。
5.根据权利要求1所述的基于迁移学习的深度神经网络胃部mri图像分割方法,其特征在于,所述步骤4)包括:
a)低质量mri图像取y幅为训练样本集,将每一幅图像分别对进行逆时针旋转180度、垂直翻转和水平翻转得到对应的另外三张图。即将原始数据集扩大了3倍,一共得到4y幅低质量mri训练样本;标签也同样进行增广操作,附相同数量的训练样本标签;
b)低质量mri图像z幅为测试样本集,同时附相同数量的测试样本标签。
6.根据权利要求1所述的基于迁移学习的深度神经网络胃部mri图像分割方法,其特征在于,所述步骤5)包括:
采用基于u-net深度神经网络模型,训练生成高质量胃部mri图像深度神经网络a。
7.根据权利要求1所述的基于迁移学习的深度神经网络胃部mri图像分割方法,其特征在于,所述步骤6)包括:
采用基于u-net深度神经网络模型,训练生成低质量胃部mri图像深度神经网络b。
技术总结